
Developer Guide

Amazon Data Firehose

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Data Firehose Developer Guide

Amazon Data Firehose: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Data Firehose Developer Guide

Table of Contents

... xi
What is Amazon Data Firehose ... 1

Learn key concepts ... 1
Understand data flow in Amazon Data Firehose ... 2
Working with AWS SDKs ... 3

Complete prerequisites to set up Firehose .. 5
Sign up for AWS ... 5
(Optional) Download libraries and tools ... 5

Tutorial: Create a Firehose stream ... 7
Choose source and destination for your Firehose stream .. 7
Configure source settings ... 9

Configure source settings for Amazon MSK .. 10
Configure source settings for Amazon Kinesis Data Streams .. 11

(Optional) Configure record transformation and format conversion .. 12
Configure destination settings .. 14

Configure destination settings for Amazon S3 .. 15
Configure destination settings for Apache Iceberg Tables ... 18
Configure destination settings for Amazon Redshift .. 19
Configure destination settings for OpenSearch Service ... 25
Configure destination settings for OpenSearch Serverless .. 27
Configure destination settings for HTTP Endpoint ... 28
Configure destination settings for Datadog ... 30
Configure destination settings for Honeycomb ... 32
Configure destination settings for Coralogix .. 34
Configure destination settings for Dynatrace ... 36
Configure destination settings for LogicMonitor ... 38
Configure destination settings for Logz.io .. 39
Configure destination settings for MongoDB Cloud ... 41
Configure destination settings for New Relic ... 43
Configure destination settings for Snowflake .. 45
Configure destination settings for Splunk .. 48
Configure destination settings for Splunk Observability Cloud .. 50
Configure destination settings for Sumo Logic .. 52
Configure destination settings for Elastic ... 53

iii

Amazon Data Firehose Developer Guide

Configure backup settings ... 55
Configure buffering hints .. 57

Configure advanced settings ... 59
Test your Firehose stream ... 62

Prerequisites .. 62
Test with Amazon S3 .. 62
Test with Amazon Redshift .. 63
Test with OpenSearch Service ... 63
Test with Splunk ... 64
Test with Apache Iceberg Tables .. 65

Send data to a Firehose stream ... 66
Configure Kinesis agent to send data .. 66

Prerequisites ... 67
Manage AWS credentials ... 67
Create custom credential providers .. 68
Download and install the Agent .. 68
Configure and start the Agent ... 70
Specify agent configuration settings .. 71
Configure multiple file directories and streams ... 75
Pre-process data with Agents .. 76
Use common Agent CLI commands .. 80
Troubleshoot issues when sending from Kinesis Agent .. 81

Send data with AWS SDK ... 83
Single write operations using PutRecord ... 83
Batch write operations using PutRecordBatch ... 83

Send CloudWatch Logs to Firehose ... 84
Decompress CloudWatch Logs ... 84
Extract message after decompression of CloudWatch Logs .. 85
Enable decompression on a new Firehose stream from console .. 86
Enable decompression on an existing Firehose stream .. 87
Disable decompression on Firehose stream .. 88
Troubleshoot decompression in Firehose .. 88

Send CloudWatch Events to Firehose .. 90
Configure AWS IoT to send data to Firehose ... 90

Transform source data .. 92
Understand data transformation flow ... 92

iv

Amazon Data Firehose Developer Guide

Lambda invocation duration .. 92
Required parameters for data transformation ... 93
Supported Lambda blueprints .. 94
Handle failure in data transformation ... 95
Back up source records ... 96

Partition streaming data ... 97
Enable dynamic partitioning ... 97
Understand partitioning keys .. 98

Create partitioning keys with inline parsing ... 99
Create partitioning keys with an AWS Lambda function ... 100

Use Amazon S3 bucket prefix to deliver data ... 103
Add a new line delimiter when delivering data to Amazon S3 ... 104

Apply dynamic partitioning to aggregated data ... 105
Troubleshoot dynamic partitioning errors .. 106
Buffer data for dynamic partitioning .. 106

Convert input data format .. 108
Deserializer .. 108
Schema ... 109
Serializer .. 110
Enable record format conversion ... 110

Enable record format conversion from console ... 111
Manage record format conversion from Firehose API .. 111

Handling errors for data format conversion .. 112
Understand data delivery ... 113

Understand delivery across AWS accounts and regions .. 115
Understand HTTP endpoint delivery request and response specifications 115

Request format ... 116
Response format ... 119
Examples ... 122

Handle data delivery failures .. 123
Amazon S3 ... 123
Amazon Redshift .. 124
Amazon OpenSearch Service and OpenSearch Serverless ... 124
Splunk ... 125
HTTP endpoint destination .. 126
Snowflake ... 127

v

Amazon Data Firehose Developer Guide

Configure Amazon S3 object name format ... 128
Understand custom prefixes for Amazon S3 objects .. 137

Configure index rotation for OpenSearch Service .. 142
Pause and resume data delivery .. 142

Pause a Firehose stream ... 143
Resume a Firehose stream .. 144

Deliver data to Apache Iceberg Tables .. 145
Consideration and limitations ... 145
Prerequisites .. 147

Prerequisites to deliver to Iceberg Tables in Amazon S3 ... 148
Prerequisites to deliver to Amazon S3 Tables .. 148

Set up the Firehose stream ... 149
Configure source and destination ... 149
Configure data transformation .. 150
Connect data catalog .. 150
Configure JQ expressions ... 150
Configure unique keys ... 150
Specify retry duration ... 151
Handle failed delivery or processing .. 151
Configure buffer hints ... 151
Configure advanced settings .. 152

Route incoming records to a single Iceberg table .. 152
Route incoming records to different Iceberg tables ... 153

Provide routing information to Firehose with JSONQuery expression 154
Provide routing information using an AWS Lambda function .. 155

Monitor metrics .. 159
Understand supported data types ... 160

Data types examples ... 160
Resources ... 164

Replicate database changes to Apache Iceberg ... 165
Consideration and limitations ... 166
Prerequisites .. 167
Set up the Firehose stream ... 169

Configure source and destination ... 169
Configure database connectivity ... 169
Configure data capture ... 170

vi

Amazon Data Firehose Developer Guide

Configure surrogate keys .. 171
Provide snapshot watermark table ... 171
Configure destination settings .. 172

Monitor metrics .. 175
Grant Firehose access .. 176
Understand supported data types ... 178
Set up database connectivity .. 183

MySQL - RDS, Aurora and self-managed databases running on Amazon EC2 184
PostgreSQL - RDS and Aurora Databases ... 186
PostgreSQL - self-managed databases running on Amazon EC2 ... 188
PostgreSQL - sharing table ownership for RDS or self-managed databases running on
Amazon EC2 ... 190
Enable transaction logs ... 191

Tag a Firehose stream ... 194
Understand tag basics .. 194
Track costs with tagging .. 195
Know tag restrictions .. 196

Security .. 197
Data Protection .. 198

Server-side encryption with Kinesis Data Streams .. 198
Server-side encryption with Direct PUT or other data sources ... 198

Controlling access .. 200
Grant access to your Firehose resources ... 201
Grant Firehose access to your private Amazon MSK cluster .. 201
Allow Firehose to assume an IAM role .. 202
Grant Firehose access to AWS Glue for data format conversion .. 204
Grant Firehose access to an Amazon S3 destination .. 205
Grant Firehose access to Amazon S3 Tables .. 208
Grant Firehose access to an Apache Iceberg Tables destination ... 211
Grant Firehose access to an Amazon Redshift destination .. 214
Grant Firehose access to a public OpenSearch Service destination ... 218
Grant Firehose access to an OpenSearch Service destination in a VPC 221
Grant Firehose access to a public OpenSearch Serverless destination 222
Grant Firehose access to an OpenSearch Serverless destination in a VPC 225
Grant Firehose access to a Splunk destination .. 226
Accessing Splunk in VPC ... 229

vii

Amazon Data Firehose Developer Guide

Tutorial: Ingest VPC flow logs into Splunk using Amazon Data Firehose 231
Accessing Snowflake or HTTP end point ... 231
Grant Firehose access to a Snowflake destination .. 231
Accessing Snowflake in VPC ... 233
Grant Firehose access to an HTTP endpoint destination ... 238
Cross-account delivery from Amazon MSK ... 240
Cross-account delivery to an Amazon S3 destination .. 243
Cross-account delivery to an OpenSearch Service destination ... 245
Using tags to control access .. 246

Authenticate with AWS Secrets Manager ... 249
Understand secrets ... 249
Create a secret .. 250
Use the secret ... 250
Rotate the secret .. 252

Manage IAM roles through console ... 253
Choose an existing IAM role .. 254
Create a new IAM role from console .. 254
Edit IAM role from console .. 256

Compliance validation .. 257
Resilience ... 257

Disaster recovery .. 258
Understand infrastructure security .. 258

Using Firehose with AWS PrivateLink .. 259
Implement security best practices ... 264

Implement least privilege access .. 264
Use IAM roles .. 264
Implement server-side encryption in dependent resources .. 264
Use CloudTrail to monitor API calls ... 265

Monitor Amazon Data Firehose .. 266
Implement best practices with CloudWatch Alarms ... 266
Monitoring with CloudWatch Metrics .. 267

CloudWatch metrics for dynamic partitioning ... 268
CloudWatch metrics for data delivery ... 269
Data ingestion metrics .. 282
API-level CloudWatch metrics .. 291
Data Transformation CloudWatch Metrics .. 294

viii

Amazon Data Firehose Developer Guide

CloudWatch Logs Decompression Metrics ... 295
Format Conversion CloudWatch Metrics .. 296
Server-Side Encryption (SSE) CloudWatch Metrics .. 296
Dimensions for Amazon Data Firehose .. 297
Amazon Data Firehose Usage Metrics .. 297

Access CloudWatch Metrics for Amazon Data Firehose ... 299
Monitor with CloudWatch Logs .. 299

Data delivery errors ... 300
Access CloudWatch logs for Amazon Data Firehose ... 336
Monitor Agent Health ... 337

Monitor with CloudWatch ... 338
Log Firehose API calls ... 338

Firehose information in CloudTrail ... 339
Example: Firehose log file entries ... 340

Code examples ... 345
Basics .. 345

Actions .. 346
Scenarios .. 356

Put records to Firehose ... 356
Troubleshoot errors ... 370

Common issues .. 370
Firehose stream unavailable ... 370
No data at destination .. 371
Data freshness metric increasing or not emitted .. 371
Record format conversion to Apache Parquet fails ... 372
Missing fields for transformed object for Lambda .. 373

Troubleshooting Amazon S3 ... 373
Troubleshooting Amazon Redshift ... 374
Troubleshooting Amazon OpenSearch Service .. 375
Troubleshooting Splunk ... 377
Troubleshooting Snowflake ... 378

Firehose stream creation fails .. 378
Troubleshooting Firehose endpoint reachability ... 380
Troubleshooting HTTP Endpoints .. 381

CloudWatch Logs .. 381
Troubleshooting MSK As Source ... 384

ix

Amazon Data Firehose Developer Guide

Hose creation fails .. 385
Hose Suspended ... 385
Hose Backpresurred ... 385
Incorrect Data Freshness ... 385
MSK cluster connection issues ... 386

Quota .. 389
Document history .. 393

x

Amazon Data Firehose Developer Guide

xi

Amazon Data Firehose Developer Guide

What is Amazon Data Firehose?

Amazon Data Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Redshift, Amazon
OpenSearch Service, Amazon OpenSearch Serverless, Splunk, Apache Iceberg Tables, and any
custom HTTP endpoint or HTTP endpoints owned by supported third-party service providers,
including Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic, Coralogix, and Elastic. With
Amazon Data Firehose, you don't need to write applications or manage resources. You configure
your data producers to send data to Amazon Data Firehose, and it automatically delivers the data
to the destination that you specified. You can also configure Amazon Data Firehose to transform
your data before delivering it.

For more information about AWS big data solutions, see Big Data on AWS. For more information
about AWS streaming data solutions, see What is Streaming Data?

Learn key concepts

As you get started with Amazon Data Firehose, you can benefit from understanding the following
concepts.

Firehose stream

The underlying entity of Amazon Data Firehose. You use Amazon Data Firehose by creating
a Firehose stream and then sending data to it. For more information, see Tutorial: Create a
Firehose stream from console and Send data to a Firehose stream.

Record

The data of interest that your data producer sends to a Firehose stream. A record can be as
large as 1,000 KB.

Data producer

Producers send records to Firehose streams. For example, a web server that sends log data
to a Firehose stream is a data producer. You can also configure your Firehose stream to
automatically read data from an existing Kinesis data stream, and load it into destinations. For
more information, see Send data to a Firehose stream.

Learn key concepts 1

http://aws.amazon.com/streaming-data/
http://aws.amazon.com/big-data/
http://aws.amazon.com/streaming-data/

Amazon Data Firehose Developer Guide

Buffer size and buffer interval

Amazon Data Firehose buffers incoming streaming data to a certain size or for a certain period
of time before delivering it to destinations. Buffer Size is in MBs and Buffer Interval is in
seconds.

Understand data flow in Amazon Data Firehose

For Amazon S3 destinations, streaming data is delivered to your S3 bucket. If data transformation
is enabled, you can optionally back up source data to another Amazon S3 bucket.

For Amazon Redshift destinations, streaming data is delivered to your S3 bucket first. Amazon Data
Firehose then issues an Amazon Redshift COPY command to load data from your S3 bucket to your
Amazon Redshift cluster. If data transformation is enabled, you can optionally back up source data
to another Amazon S3 bucket.

For OpenSearch Service destinations, streaming data is delivered to your OpenSearch Service
cluster, and it can optionally be backed up to your S3 bucket concurrently.

Understand data flow in Amazon Data Firehose 2

Amazon Data Firehose Developer Guide

For Splunk destinations, streaming data is delivered to Splunk, and it can optionally be backed up
to your S3 bucket concurrently.

Using Firehose with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

Working with AWS SDKs 3

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2

Amazon Data Firehose Developer Guide

SDK documentation Code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 4

https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Data Firehose Developer Guide

Complete prerequisites to set up Amazon Data Firehose

Before you use Amazon Data Firehose for the first time, complete the following tasks.

Tasks

• Sign up for AWS

• (Optional) Download libraries and tools

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including Amazon Data Firehose. You are charged only for the services that
you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use
the following procedure to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

(Optional) Download libraries and tools

The following libraries and tools will help you work with Amazon Data Firehose programmatically
and from the command line:

• The Firehose API Operations is the basic set of operations that Amazon Data Firehose supports.

Sign up for AWS 5

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html

Amazon Data Firehose Developer Guide

• The AWS SDKs for Go, Java, .NET, Node.js, Python, and Ruby include Amazon Data Firehose
support and samples.

If your version of the AWS SDK for Java does not include samples for Amazon Data Firehose, you
can also download the latest AWS SDK from GitHub.

• The AWS Command Line Interface supports Amazon Data Firehose. The AWS CLI enables you to
control multiple AWS services from the command line and automate them through scripts.

(Optional) Download libraries and tools 6

https://docs.aws.amazon.com/sdk-for-go/api/service/firehose/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/developers/getting-started/python/
https://aws.amazon.com/developers/getting-started/ruby/
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Data Firehose Developer Guide

Tutorial: Create a Firehose stream from console

You can use the AWS Management Console or an AWS SDK to create a Firehose stream to your
chosen destination.

You can update the configuration of your Firehose stream at any time after it’s created, using
the Amazon Data Firehose console or UpdateDestination. Your Firehose stream remains in the
Active state while your configuration is updated, and you can continue to send data. The updated
configuration normally takes effect within a few minutes. The version number of a Firehose stream
is increased by a value of 1 after you update the configuration. It is reflected in the delivered
Amazon S3 object name. For more information, see Configure Amazon S3 object name format.

Perform the steps in the following topics to create a Firehose stream.

Topics

• Choose source and destination for your Firehose stream

• Configure source settings

• (Optional) Configure record transformation and format conversion

• Configure destination settings

• Configure backup settings

• Configure advanced settings

Choose source and destination for your Firehose stream

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose Create Firehose stream.

3. On the Create Firehose stream page, choose a source for your Firehose stream from one of
the following options.

• Direct PUT – Choose this option to create a Firehose stream that producer applications
write to directly. Here is a list of AWS services and agents and open source services that
integrate with Direct PUT in Amazon Data Firehose. This list is not exhaustive, and there may
be additional services that can be used to send data directly to Firehose.

• AWS SDK

Choose source and destination for your Firehose stream 7

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

• AWS Lambda

• AWS CloudWatch Logs

• AWS CloudWatch Events

• AWS Cloud Metric Streams

• AWS IoT

• AWS Eventbridge

• Amazon Simple Email Service

• Amazon SNS

• AWS WAF web ACL logs

• Amazon API Gateway - Access logs

• Amazon Pinpoint

• Amazon MSK Broker Logs

• Amazon Route 53 Resolver query logs

• AWS Network Firewall Alerts Logs

• AWS Network Firewall Flow Logs

• Amazon Elasticache Redis SLOWLOG

• Kinesis Agent (linux)

• Kinesis Tap (windows)

• Fluentbit

• Fluentd

• Apache Nifi

• Snowflake

• Amazon Kinesis Data Streams – Choose this option to configure a Firehose stream that uses
a Kinesis data stream as a data source. You can then use Firehose to read data easily from an
existing Kinesis data stream and load it into destinations. For more information about using
Kinesis Data Streams as your data source, see Sending data to a Firehose stream with Kinesis
Data Streams.

• Amazon MSK – Choose this option to configure a Firehose stream that uses Amazon MSK as
a data source. You can then use Firehose to read data easily from an existing Amazon MSK
clusters and load it into specified S3 buckets. For more information, see Sending data to a
Firehose stream with Amazon MSK.Choose source and destination for your Firehose stream 8

Amazon Data Firehose Developer Guide

4. Choose a destination for your Firehose stream from one of the following destinations that
Firehose supports.

• Amazon OpenSearch Service

• Amazon OpenSearch Serverless

• Amazon Redshift

• Amazon S3

• Apache Iceberg Tables

• Coralogix

• Datadog

• Dynatrace

• Elastic

• HTTP Endpoint

• Honeycomb

• Logic Monitor

• Logz.io

• MongoDB Cloud

• New Relic

• Splunk

• Splunk Observability Cloud

• Sumo Logic

• Snowflake

5. For Firehose stream name, you can either use the name that the console generates for you or
add a Firehose stream of your choice.

Configure source settings

You can configure the source settings based on the source that you choose to send information to
a Firehose stream from console. You can configure source settings for Amazon MSK and Amazon
Kinesis Data Streams as the source. There are no source settings available for Direct PUT as the
source.

Configure source settings 9

Amazon Data Firehose Developer Guide

Configure source settings for Amazon MSK

When you choose Amazon MSK to send information to a Firehose stream, you can choose between
MSK provisioned and MSK-Serverless clusters. You can then use Firehose to read data easily from a
specific Amazon MSK cluster and topic and load it into the specified S3 destination.

In the Source settings section of the page, provide values for the following fields.

Amazon MSK cluster connectivity

Choose either the Private bootstrap brokers (recommended) or Public bootstrap brokers
option based on your cluster configuration. Bootstrap brokers is what Apache Kafka client uses
as a starting point to connect to the cluster. Public bootstrap brokers are intended for public
access from outside of AWS, while private bootstrap brokers are intended for access from within
AWS. For more information about Amazon MSK, see Amazon Managed Streaming for Apache
Kafka.

To connect to a provisioned or serverless Amazon MSK cluster through private bootstrap
brokers, the cluster must meet all of the following requirements.

• The cluster must be active.

• The cluster must have IAM as one of its access control methods.

• Multi-VPC private connectivity must be enabled for the IAM access control method.

• You must add to this cluster a resource-based policy which grants Firehose service principal
the permission to invoke the Amazon MSK CreateVpcConnection API operation.

To connect to a provisioned Amazon MSK cluster through public bootstrap brokers, the cluster
must meet all of the following requirements.

• The cluster must be active.

• The cluster must have IAM as one of its access control methods.

• The cluster must be public-accessible.

MSK cluster account

You can choose the account where the Amazon MSK cluster resides. This can be one of the
following.

• Current account – Allows you to ingest data from an MSK cluster in the current AWS account.
For this, you must specify the ARN of the Amazon MSK cluster from where your Firehose
stream will read data.

Configure source settings for Amazon MSK 10

https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Amazon Data Firehose Developer Guide

• Cross-account – Allows you to ingest data from an MSK cluster in another AWS account. For
more information, see Cross-account delivery from Amazon MSK.

Topic

Specify the Apache Kafka topic from which you want your Firehose stream to ingest data. You
cannot update this topic after Firehose stream creation completes.

Note

Firehose automatically decompresses Apache Kafka messages.

Configure source settings for Amazon Kinesis Data Streams

Configure the source settings for Amazon Kinesis Data Streams to send information to a Firehose
stream as following.

Important

If you use the Kinesis Producer Library (KPL) to write data to a Kinesis data stream, you
can use aggregation to combine the records that you write to that Kinesis data stream. If
you then use that data stream as a source for your Firehose stream, Amazon Data Firehose
de-aggregates the records before it delivers them to the destination. If you configure your
Firehose stream to transform the data, Amazon Data Firehose de-aggregates the records
before it delivers them to AWS Lambda. For more information, see Developing Amazon
Kinesis Data Streams Producers Using the Kinesis Producer Library and Aggregation.

Under the Source settings, choose an existing stream in the Kinesis data stream list, or enter
a data stream ARN in the format arn:aws:kinesis:[Region]:[AccountId]:stream/
[StreamName].

If you do not have an existing data stream then choose Create to create a new one from Amazon
Kinesis console. You may need an IAM role that has the necessary permission on the Kinesis stream.
For more information, see ???. After you create a new stream, choose the refresh icon to update the
Kinesis stream list. If you have a large number of streams, filter the list using Filter by name.

Configure source settings for Amazon Kinesis Data Streams 11

https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation

Amazon Data Firehose Developer Guide

Note

When you configure a Kinesis data stream as the source of a Firehose stream, the Amazon
Data Firehose PutRecord and PutRecordBatch operations are disabled. To add data
to your Firehose stream in this case, use the Kinesis Data Streams PutRecord and
PutRecords operations.

Amazon Data Firehose starts reading data from the LATEST position of your Kinesis stream. For
more information about Kinesis Data Streams positions, see GetShardIterator.

Amazon Data Firehose calls the Kinesis Data Streams GetRecords operation once per second
for each shard. However, when full backup is enabled, Firehose calls the Kinesis Data Streams
GetRecords operation twice per second for each shard, one for primary delivery destination and
another for full backup.

More than one Firehose stream can read from the same Kinesis stream. Other Kinesis applications
(consumers) can also read from the same stream. Each call from any Firehose stream or other
consumer application counts against the overall throttling limit for the shard. To avoid getting
throttled, plan your applications carefully. For more information about Kinesis Data Streams limits,
see Amazon Kinesis Streams Limits.

Proceed to the next step to configure record transformation and format conversion.

(Optional) Configure record transformation and format
conversion

Configure Amazon Data Firehose to transform and convert your record data.

If you choose Amazon MSK as the source for your Firehose stream.

In the Transform source records with AWS Lambda section, provide values for the following
field.

1.
Data transformation

To create a Firehose stream that doesn't transform incoming data, do not check the Enable
data transformation checkbox.

(Optional) Configure record transformation and format conversion 12

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html

Amazon Data Firehose Developer Guide

To specify a Lambda function for Firehose to invoke and use to transform incoming data
before delivering it, check the Enable data transformation checkbox. You can configure a
new Lambda function using one of the Lambda blueprints or choose an existing Lambda
function. Your Lambda function must contain the status model that is required by Firehose.
For more information, see Transform source data in Amazon Data Firehose.

2. In the Convert record format section, provide values for the following field:

Record format conversion

To create a Firehose stream that doesn't convert the format of the incoming data records,
choose Disabled.

To convert the format of the incoming records, choose Enabled, then specify the output
format you want. You need to specify an AWS Glue table that holds the schema that you
want Firehose to use to convert your record format. For more information, see Convert
input data format.

For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::KinesisFirehose::DeliveryStream.

If you choose Managed Service for Apache Flink or Direct PUT as the source for
your Firehose stream

In the Source settings section, provide the following fields.

1. Under Transform records, choose one of the following:

a. If your destination is Amazon S3 or Splunk, in the Decompress source records Amazon
CloudWatch Logs section, choose Turn on decompression.

b. In the Transform source records with AWS Lambda section, provide values for the
following field:

Data transformation

To create a Firehose stream that doesn't transform incoming data, do not check the
Enable data transformation checkbox.

(Optional) Configure record transformation and format conversion 13

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples

Amazon Data Firehose Developer Guide

To specify a Lambda function for Amazon Data Firehose to invoke and use to
transform incoming data before delivering it, check the Enable data transformation
checkbox. You can configure a new Lambda function using one of the Lambda
blueprints or choose an existing Lambda function. Your Lambda function must contain
the status model that is required by Amazon Data Firehose. For more information, see
Transform source data in Amazon Data Firehose.

2. In the Convert record format section, provide values for the following field:

Record format conversion

To create a Firehose stream that doesn't convert the format of the incoming data records,
choose Disabled.

To convert the format of the incoming records, choose Enabled, then specify the output
format you want. You need to specify an AWS Glue table that holds the schema that you
want Amazon Data Firehose to use to convert your record format. For more information,
see Convert input data format.

For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::KinesisFirehose::DeliveryStream.

Configure destination settings

This section describes the settings that you must configure for your Firehose stream based on the
destination you select.

Topics

• Configure destination settings for Amazon S3

• Configure destination settings for Apache Iceberg Tables

• Configure destination settings for Amazon Redshift

• Configure destination settings for OpenSearch Service

• Configure destination settings for OpenSearch Serverless

• Configure destination settings for HTTP Endpoint

• Configure destination settings for Datadog

• Configure destination settings for Honeycomb

Configure destination settings 14

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples

Amazon Data Firehose Developer Guide

• Configure destination settings for Coralogix

• Configure destination settings for Dynatrace

• Configure destination settings for LogicMonitor

• Configure destination settings for Logz.io

• Configure destination settings for MongoDB Cloud

• Configure destination settings for New Relic

• Configure destination settings for Snowflake

• Configure destination settings for Splunk

• Configure destination settings for Splunk Observability Cloud

• Configure destination settings for Sumo Logic

• Configure destination settings for Elastic

Configure destination settings for Amazon S3

You must specify the following settings in order to use Amazon S3 as the destination for your
Firehose stream.

• Enter values for the following fields.

S3 bucket

Choose an S3 bucket that you own where the streaming data should be delivered. You can
create a new S3 bucket or choose an existing one.

New line delimiter

You can configure your Firehose stream to add a new line delimiter between records in
objects that are delivered to Amazon S3. To do so, choose Enabled. To not add a new line
delimiter between records in objects that are delivered to Amazon S3, choose Disabled. If
you plan to use Athena to query S3 objects with aggregated records, enable this option.

Dynamic partitioning

Choose Enabled to enable and configure dynamic partitioning.

Configure destination settings for Amazon S3 15

Amazon Data Firehose Developer Guide

Multi record deaggregation

This is the process of parsing through the records in the Firehose stream and separating
them based either on valid JSON or on the specified new line delimiter.

If you aggregate multiple events, logs, or records into a single PutRecord and
PutRecordBatch API call, you can still enable and configure dynamic partitioning. With
aggregated data, when you enable dynamic partitioning, Amazon Data Firehose parses the
records and looks for multiple valid JSON objects within each API call. When the Firehose
stream is configured with Kinesis Data Stream as a source, you can also use the built-in
aggregation in the Kinesis Producer Library (KPL). Data partition functionality is executed
after data is de-aggregated. Therefore, each record in each API call can be delivered to
different Amazon S3 prefixes. You can also leverage the Lambda function integration to
perform any other deaggregation or any other transformation before the data partitioning
functionality.

Important

If your data is aggregated, dynamic partitioning can be applied only after data
deaggregation is performed. So if you enable dynamic partitioning to your
aggregated data, you must choose Enabled to enable multi record deaggregation.

Firehose stream performs the following processing steps in the following order: KPL
(protobuf) deaggregation, JSON or delimiter deaggregation, Lambda processing, data
partitioning, data format conversion, and Amazon S3 delivery.

Multi record deaggregation type

If you enabled multi record deaggregation, you must specify the method for Firehose to
deaggregate your data. Use the drop-down menu to choose either JSON or Delimited.

Inline parsing

This is one of the supported mechanisms to dynamically partition your data that is bound
for Amazon S3. To use inline parsing for dynamic partitioning of your data, you must
specify data record parameters to be used as partitioning keys and provide a value for each
specified partitioning key. Choose Enabled to enable and configure inline parsing.

Configure destination settings for Amazon S3 16

Amazon Data Firehose Developer Guide

Important

If you specified an AWS Lambda function in the steps above for transforming your
source records, you can use this function to dynamically partition your data that
is bound to S3 and you can still create your partitioning keys with inline parsing.
With dynamic partitioning, you can use either inline parsing or your AWS Lambda
function to create your partitioning keys. Or you can use both inline parsing and
your AWS Lambda function at the same time to create your partitioning keys.

Dynamic partitioning keys

You can use the Key and Value fields to specify the data record parameters to be used
as dynamic partitioning keys and jq queries to generate dynamic partitioning key values.
Firehose supports jq 1.6 only. You can specify up to 50 dynamic partitioning keys. You must
enter valid jq expressions for your dynamic partitioning key values in order to successfully
configure dynamic partitioning for your Firehose stream.

S3 bucket prefix

When you enable and configure dynamic partitioning, you must specify the S3 bucket
prefixes to which Amazon Data Firehose is to deliver partitioned data.

In order for dynamic partitioning to be configured correctly, the number of the S3 bucket
prefixes must be identical to the number of the specified partitioning keys.

You can partition your source data with inline parsing or with your specified AWS Lambda
function. If you specified an AWS Lambda function to create partitioning keys for your
source data, you must manually type in the S3 bucket prefix value(s) using the following
format: "partitionKeyFromLambda:keyID". If you are using inline parsing to specify the
partitioning keys for your source data, you can either manually type in the S3 bucket
preview values using the following format: "partitionKeyFromQuery:keyID" or you can
choose the Apply dynamic partitioning keys button to use your dynamic partitioning
key/value pairs to auto-generate your S3 bucket prefixes. While partitioning your data
with either inline parsing or AWS Lambda, you can also use the following expression
forms in your S3 bucket prefix: !{namespace:value}, where namespace can be either
partitionKeyFromQuery or partitionKeyFromLambda.

Configure destination settings for Amazon S3 17

Amazon Data Firehose Developer Guide

S3 bucket and S3 error output prefix time zone

Choose a time zone that you want to use for date and time in custom prefixes for Amazon
S3 objects. By default, Firehose adds a time prefix in UTC. You can change the time zone
used in S3 prefixes if you want to use different time zone.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
Firehose streams with Amazon Redshift as the destination.

S3 file extension format (optional)

Specify a file extension format for objects delivered to Amazon S3 destination bucket.
If you enable this feature, specified file extension will override default file extensions
appended by Data Format Conversion or S3 compression features such as .parquet or .gz.
Make sure if you configured the right file extension when you use this feature with Data
Format Conversion or S3 compression. File extension must start with a period (.) and can
contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot exceed 128 characters.

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the
list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Configure destination settings for Apache Iceberg Tables

Firehose supports Apache Iceberg Tables as a destination in all AWS Regions except China Regions,
AWS GovCloud (US) Regions, and Asia Pacific (Malaysia).
Configure destination settings for Apache Iceberg Tables 18

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

For more information on Apache Iceberg Tables as your destination, see Deliver data to Apache
Iceberg Tables with Amazon Data Firehose.

Configure destination settings for Amazon Redshift

This section describes settings for using Amazon Redshift as your Firehose stream destination.

Choose either of the following procedures based on whether you have an Amazon Redshift
provisioned cluster or an Amazon Redshift Serverless workgroup.

• Amazon Redshift Provisioned Cluster

• Configure destination settings for Amazon Redshift Serverless workgroup

Note

Firehose can't write to Amazon Redshift clusters that use enhanced VPC routing.

Amazon Redshift Provisioned Cluster

This section describes settings for using Amazon Redshift provisioned cluster as your Firehose
stream destination.

• Enter values for the following fields:

Cluster

The Amazon Redshift cluster to which S3 bucket data is copied. Configure the Amazon
Redshift cluster to be publicly accessible and unblock Amazon Data Firehose IP addresses.
For more information, see Grant Firehose access to an Amazon Redshift destination .

Authentication

You can either choose to enter the username/password directly or retrieve the secret from
AWS Secrets Manager to access the Amazon Redshift cluster.

• User name

Specify an Amazon Redshift user with permissions to access the Amazon Redshift cluster.
This user must have the Amazon Redshift INSERT permission for copying data from the
S3 bucket to the Amazon Redshift cluster.

Configure destination settings for Amazon Redshift 19

Amazon Data Firehose Developer Guide

• Password

Specify the password for the user that has permissions to access the cluster.

• Secret

Select a secret from AWS Secrets Manager that contains the credentials for the Amazon
Redshift cluster. If you do not see your secret in the drop-down list, create one in AWS
Secrets Manager for your Amazon Redshift credentials. For more information, see
Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Database

The Amazon Redshift database to where the data is copied.

Table

The Amazon Redshift table to where the data is copied.

Columns

(Optional) The specific columns of the table to which the data is copied. Use this option
if the number of columns defined in your Amazon S3 objects is less than the number of
columns within the Amazon Redshift table.

Intermediate S3 destination

Firehose delivers your data to your S3 bucket first and then issues an Amazon Redshift
COPY command to load the data into your Amazon Redshift cluster. Specify an S3 bucket
that you own where the streaming data should be delivered. Create a new S3 bucket, or
choose an existing bucket that you own.

Firehose doesn't delete the data from your S3 bucket after loading it to your Amazon
Redshift cluster. You can manage the data in your S3 bucket using a lifecycle configuration.
For more information, see Object Lifecycle Management in the Amazon Simple Storage
Service User Guide.

Intermediate S3 prefix

(Optional) To use the default prefix for Amazon S3 objects, leave this option blank. Firehose
automatically uses a prefix in "YYYY/MM/dd/HH" UTC time format for delivered Amazon
S3 objects. You can add to the start of this prefix. For more information, see Configure
Amazon S3 object name format.

Configure destination settings for Amazon Redshift 20

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon Data Firehose Developer Guide

COPY options

Parameters that you can specify in the Amazon Redshift COPY command. These might
be required for your configuration. For example, "GZIP" is required if Amazon S3 data
compression is enabled. "REGION" is required if your S3 bucket isn't in the same AWS
Region as your Amazon Redshift cluster. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

COPY command

The Amazon Redshift COPY command. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if data COPY to your Amazon Redshift
cluster fails. Firehose retries every 5 minutes until the retry duration ends. If you set the
retry duration to 0 (zero) seconds, Firehose does not retry upon a COPY command failure.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
Firehose streams with Amazon Redshift as the destination.

S3 file extension format (optional)

S3 file extension format (optional) – Specify a file extension format for objects delivered
to Amazon S3 destination bucket. If you enable this feature, specified file extension will
override default file extensions appended by Data Format Conversion or S3 compression
features such as .parquet or .gz. Make sure if you configured the right file extension when
you use this feature with Data Format Conversion or S3 compression. File extension must
start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension
cannot exceed 128 characters.

Configure destination settings for Amazon Redshift 21

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the
list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Configure destination settings for Amazon Redshift Serverless workgroup

This section describes settings for using Amazon Redshift Serverless workgroup as your Firehose
stream destination.

• Enter values for the following fields:

Workgroup name

The Amazon Redshift Serverless workgroup to which S3 bucket data is copied. Configure
the Amazon Redshift Serverless workgroup to be publicly accessible and unblock the
Firehose IP addresses. For more information, see the Connect to a publicly accessible
Amazon Redshift Serverless instance section in Connecting to Amazon Redshift Serverless
and also Grant Firehose access to an Amazon Redshift destination .

Authentication

You can either choose to enter the username/password directly or retrieve the secret from
AWS Secrets Manager to access the Amazon Redshift Serverless workgroup.

• User name

Specify an Amazon Redshift user with permissions to access the Amazon Redshift
Serverless workgroup. This user must have the Amazon Redshift INSERT permission for
copying data from the S3 bucket to the Amazon Redshift Serverless workgroup.

• Password

Specify the password for the user that has permissions to access the Amazon Redshift
Serverless workgroup.

Configure destination settings for Amazon Redshift 22

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html

Amazon Data Firehose Developer Guide

• Secret

Select a secret from AWS Secrets Manager that contains the credentials for the Amazon
Redshift Serverless workgroup. If you do not see your secret in the drop-down list, create
one in AWS Secrets Manager for your Amazon Redshift credentials. For more information,
see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Database

The Amazon Redshift database to where the data is copied.

Table

The Amazon Redshift table to where the data is copied.

Columns

(Optional) The specific columns of the table to which the data is copied. Use this option
if the number of columns defined in your Amazon S3 objects is less than the number of
columns within the Amazon Redshift table.

Intermediate S3 destination

Amazon Data Firehose delivers your data to your S3 bucket first and then issues an
Amazon Redshift COPY command to load the data into your Amazon Redshift Serverless
workgroup. Specify an S3 bucket that you own where the streaming data should be
delivered. Create a new S3 bucket, or choose an existing bucket that you own.

Firehose doesn't delete the data from your S3 bucket after loading it to your Amazon
Redshift Serverless workgroup. You can manage the data in your S3 bucket using a lifecycle
configuration. For more information, see Object Lifecycle Management in the Amazon
Simple Storage Service User Guide.

Intermediate S3 prefix

(Optional) To use the default prefix for Amazon S3 objects, leave this option blank. Firehose
automatically uses a prefix in "YYYY/MM/dd/HH" UTC time format for delivered Amazon
S3 objects. You can add to the start of this prefix. For more information, see Configure
Amazon S3 object name format.

COPY options

Parameters that you can specify in the Amazon Redshift COPY command. These might
be required for your configuration. For example, "GZIP" is required if Amazon S3 data

Configure destination settings for Amazon Redshift 23

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon Data Firehose Developer Guide

compression is enabled. "REGION" is required if your S3 bucket isn't in the same AWS
Region as your Amazon Redshift Serverless workgroup. For more information, see COPY in
the Amazon Redshift Database Developer Guide.

COPY command

The Amazon Redshift COPY command. For more information, see COPY in the Amazon
Redshift Database Developer Guide.

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if data COPY to your Amazon Redshift
Serverless workgroup fails. Firehose retries every 5 minutes until the retry duration ends.
If you set the retry duration to 0 (zero) seconds, Firehose does not retry upon a COPY
command failure.

Buffering hints

Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service
provider.

S3 compression

Choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or no data
compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available for
Firehose streams with Amazon Redshift as the destination.

S3 file extension format (optional)

S3 file extension format (optional) – Specify a file extension format for objects delivered
to Amazon S3 destination bucket. If you enable this feature, specified file extension will
override default file extensions appended by Data Format Conversion or S3 compression
features such as .parquet or .gz. Make sure if you configured the right file extension when
you use this feature with Data Format Conversion or S3 compression. File extension must
start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension
cannot exceed 128 characters.

S3 encryption

Firehose supports Amazon S3 server-side encryption with AWS Key Management Service
(SSE-KMS) for encrypting delivered data in Amazon S3. You can choose to use the default
encryption type specified in the destination S3 bucket or to encrypt with a key from the

Configure destination settings for Amazon Redshift 24

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

list of AWS KMS keys that you own. If you encrypt the data with AWS KMS keys, you can
use either the default AWS managed key (aws/s3) or a customer managed key. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

Configure destination settings for OpenSearch Service

This section describes options for using OpenSearch Service for your destination.

• Enter values for the following fields:

OpenSearch Service domain

The OpenSearch Service domain to which your data is delivered.

Index

The OpenSearch Service index name to be used when indexing data to your OpenSearch
Service cluster.

Index rotation

Choose whether and how often the OpenSearch Service index should be rotated. If index
rotation is enabled, Amazon Data Firehose appends the corresponding timestamp to the
specified index name and rotates. For more information, see Configure index rotation for
OpenSearch Service.

Type

The OpenSearch Service type name to be used when indexing data to your OpenSearch
Service cluster. For Elasticsearch 7.x and OpenSearch 1.x, there can be only one type per
index. If you try to specify a new type for an existing index that already has another type,
Firehose returns an error during runtime.

For Elasticsearch 7.x, leave this field empty.

Retry duration

Time duration for Firehose to retry if an index request to OpenSearch fails. For retry
duration, you can set any value between 0-7200 seconds. The default retry duration is 300

Configure destination settings for OpenSearch Service 25

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

seconds. Firehose will retry multiple times with exponential back off until the retry duration
expires.

After the retry duration expires, Firehose delivers the data to Dead Letter Queue (DLQ), a
configured S3 error bucket. For data delivered to DLQ, you have to re-drive the data back
from configured S3 error bucket to OpenSearch destination.

If you want to block Firehose stream from delivering data to DLQ due to downtime or
maintenance of OpenSearch clusters, you can configure the retry duration to a higher value
in seconds. You can increase the retry duration value above to 7200 seconds by contacting
the AWS support.

DocumentID type

Indicates the method for setting up document ID. The supported methods are Firehose-
generated document ID and OpenSearch Service-generated document ID. Firehose-
generated document ID is the default option when the document ID value is not set.
OpenSearch Service-generated document ID is the recommended option because it
supports write-heavy operations, including log analytics and observability, consuming
fewer CPU resources at the OpenSearch Service domain and thus, resulting in improved
performance.

Destination VPC connectivity

If your OpenSearch Service domain is in a private VPC, use this section to specify that
VPC. Also specify the subnets and subgroups that you want Amazon Data Firehose to use
when it sends data to your OpenSearch Service domain. You can use the same security
groups that the OpenSearch Service domain is using. If you specify different security
groups, ensure that they allow outbound HTTPS traffic to the OpenSearch Service domain's
security group. Also ensure that the OpenSearch Service domain's security group allows
HTTPS traffic from the security groups that you specified when you configured your
Firehose stream. If you use the same security group for both your Firehose stream and the
OpenSearch Service domain, make sure the security group's inbound rule allows HTTPS
traffic. For more information about security group rules, see Security group rules in the
Amazon VPC documentation.

Important

When you specify subnets for delivering data to the destination in a private VPC,
make sure you have enough number of free IP addresses in chosen subnets. If there

Configure destination settings for OpenSearch Service 26

https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Data Firehose Developer Guide

is no available free IP address in a specified subnet, Firehose cannot create or add
ENIs for the data delivery in the private VPC, and the delivery will be degraded or
fail.

Buffer hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for OpenSearch Serverless

This section describes options for using OpenSearch Serverless for your destination.

• Enter values for the following fields:

OpenSearch Serverless collection

The endpoint for a group of OpenSearch Serverless indexes to which your data is delivered.

Index

The OpenSearch Serverless index name to be used when indexing data to your OpenSearch
Serverless collection.

Destination VPC connectivity

If your OpenSearch Serverless collection is in a private VPC, use this section to specify that
VPC. Also specify the subnets and subgroups that you want Amazon Data Firehose to use
when it sends data to your OpenSearch Serverless collection.

Important

When you specify subnets for delivering data to the destination in a private VPC,
make sure you have enough number of free IP addresses in chosen subnets. If there
is no available free IP address in a specified subnet, Firehose cannot create or add
ENIs for the data delivery in the private VPC, and the delivery will be degraded or
fail.

Configure destination settings for OpenSearch Serverless 27

Amazon Data Firehose Developer Guide

Retry duration

Time duration for Firehose to retry if an index request to OpenSearch Serverless fails. For
retry duration, you can set any value between 0-7200 seconds. The default retry duration
is 300 seconds. Firehose will retry multiple times with exponential back off until the retry
duration expires.

After the retry duration expires, Firehose delivers the data to Dead Letter Queue (DLQ), a
configured S3 error bucket. For data delivered to DLQ, you have to re-drive the data back
from configured S3 error bucket to OpenSearch Serverless destination.

If you want to block Firehose stream from delivering data to DLQ due to downtime or
maintenance of OpenSearch Serverless clusters, you can configure the retry duration to a
higher value in seconds. You can increase the retry duration value above to 7200 seconds
by contacting the AWS support.

Buffer hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for HTTP Endpoint

This section describes options for using HTTP endpoint for your destination.

Important

If you choose an HTTP endpoint as your destination, review and follow the instructions in
Understand HTTP endpoint delivery request and response specifications.

• Provide values for the following fields:

HTTP endpoint name - optional

Specify a user friendly name for the HTTP endpoint. For example, My HTTP Endpoint
Destination.

Configure destination settings for HTTP Endpoint 28

https://aws.amazon.com/contact-us/

Amazon Data Firehose Developer Guide

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://
xyz.httpendpoint.com. The URL must be an HTTPS URL.

Authentication

You can either choose to enter the access key directly or retrieve the secret from AWS
Secrets Manager to access the HTTP endpoint.

• (Optional) Access key

Contact the endpoint owner if you need to obtain the access key to enable data delivery
to their endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the access key for the HTTP
endpoint. If you do not see your secret in the drop-down list, create one in AWS Secrets
Manager for the access key. For more information, see Authenticate with AWS Secrets
Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Configure destination settings for HTTP Endpoint 29

Amazon Data Firehose Developer Guide

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Important

For the HTTP endpoint destinations, if you are seeing 413 response codes from the
destination endpoint in CloudWatch Logs, lower the buffering hint size on your
Firehose stream and try again.

Configure destination settings for Datadog

This section describes options for using Datadog for your destination. For more information about
Datadog, see https://docs.datadoghq.com/integrations/amazon_web_services/.

• Provide values for the following fields.

HTTP endpoint URL

Choose where you want to send data from one of the following options in the drop-down
menu.

• Datadog logs - US1

• Datadog logs - US3

Configure destination settings for Datadog 30

https://docs.datadoghq.com/integrations/amazon_web_services/

Amazon Data Firehose Developer Guide

• Datadog logs - US5

• Datadog logs - AP1

• Datadog logs - EU

• Datadog logs - GOV

• Datadog metrics - US

• Datadog metrics - US5

• Datadog metrics - AP1

• Datadog metrics - EU

• Datadog configurations - US1

• Datadog configurations - US3

• Datadog configurations - US5

• Datadog configurations - AP1

• Datadog configurations - EU

• Datadog configurations - US GOV

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access Datadog.

• API key

Contact Datadog to obtain the API key that you need to enable data delivery to this
endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the API key for Datadog. If you
do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Configure destination settings for Datadog 31

Amazon Data Firehose Developer Guide

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for Honeycomb

This section describes options for using Honeycomb for your destination. For more information
about Honeycomb, see https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-
metrics/ .

Configure destination settings for Honeycomb 32

https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-metrics/
https://docs.honeycomb.io/getting-data-in/metrics/aws-cloudwatch-metrics/

Amazon Data Firehose Developer Guide

• Provide values for the following fields:

Honeycomb Kinesis endpoint

Specify the URL for the HTTP endpoint in the following format: https://
api.honeycomb.io/1/kinesis_events/{{dataset}}

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access Honeycomb.

• API key

Contact Honeycomb to obtain the API key that you need to enable data delivery to this
endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the API key for Honeycomb. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP to enable content encoding of your request. This
is the recommended option for the Honeycomb destination.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Configure destination settings for Honeycomb 33

Amazon Data Firehose Developer Guide

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for Coralogix

This section describes options for using Coralogix for your destination. For more information about
Coralogix, see Get Started with Coralogix.

• Provide values for the following fields:

HTTP endpoint URL

Choose the HTTP endpoint URL from the following options in the drop down menu:

• Coralogix - US

• Coralogix - SINGAPORE

• Coralogix - IRELAND

• Coralogix - INDIA

• Coralogix - STOCKHOLM

Authentication

You can either choose to enter the private key directly or retrieve the secret from AWS
Secrets Manager to access Coralogix.

Configure destination settings for Coralogix 34

https://coralogix.com/docs/guide-first-steps-coralogix/

Amazon Data Firehose Developer Guide

• Private key

Contact Coralogix to obtain the private key that you need to enable data delivery to this
endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the private key for Coralogix. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP to enable content encoding of your request. This
is the recommended option for the Coralogix destination.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Configure destination settings for Coralogix 35

Amazon Data Firehose Developer Guide

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

• applicationName: the environment where you are running Data Firehose

• subsystemName: the name of the Data Firehose integration

• computerName: the name of the Firehose stream in use

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies based on the service
provider.

Configure destination settings for Dynatrace

This section describes options for using Dynatrace for your destination. For more information, see
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-
services/integrations/cloudwatch-metric-streams/.

• Choose options to use Dynatrace as the destination for your Firehose stream.

Ingestion type

Choose whether you want to deliver Metrics or Logs (default) in Dynatrace for further
analysis and processing.

HTTP endpoint URL

Choose the HTTP endpoint URL (Dynatrace US, Dynatrace EU, or Dynatrace Global) from
the drop-down menu.

Authentication

You can either choose to enter the API token directly or retrieve the secret from AWS
Secrets Manager to access Dynatrace.

• API token

Generate the Dynatrace API token that you need to enable data delivery to this endpoint
from Firehose. For more information, see Dynatrace API - Tokens and authentication.

Configure destination settings for Dynatrace 36

https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/cloudwatch-metric-streams/
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/cloudwatch-metric-streams/
https://docs.dynatrace.com/docs/dynatrace-api/basics/dynatrace-api-authentication

Amazon Data Firehose Developer Guide

• Secret

Select a secret from AWS Secrets Manager that contains the API token for Dynatrace. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

API URL

Provide the API URL of your Dynatrace environment.

Content encoding

Choose whether you want to enable content encoding to compress body of the request.
Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. When enabled, the content it compressed in the GZIP format.

Retry duration

Specify how long Firehose retries sending data to the selected HTTP endpoint.

After sending data, Firehose first waits for an acknowledgment from the HTTP endpoint. If
an error occurs or the acknowledgment doesn’t arrive within the acknowledgment timeout
period, Firehose starts the retry duration counter. It keeps retrying until the retry duration
expires. After that, Firehose considers it a data delivery failure and backs up the data to
your Amazon S3 bucket.

Every time that Firehose sends data to the HTTP endpoint, either during the initial attempt
or after retrying, it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Firehose still waits for the acknowledgment until it
receives it or the acknowledgement timeout period is reached. If the acknowledgment
times out, Firehose determines whether there's time left in the retry counter. If there is
time left, it retries again and repeats the logic until it receives an acknowledgment or
determines that the retry time has expired.

If you don't want Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Configure destination settings for Dynatrace 37

Amazon Data Firehose Developer Guide

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The buffer hints include the buffer size and interval for your streams. The
recommended buffer size for the destination varies according to the service provider.

Configure destination settings for LogicMonitor

This section describes options for using LogicMonitor for your destination. For more information,
see https://www.logicmonitor.com.

• Provide values for the following fields:

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format.

https://ACCOUNT.logicmonitor.com

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access LogicMonitor.

• API key

Contact LogicMonitor to obtain the API key that you need to enable data delivery to this
endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the API key for LogicMonitor. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Configure destination settings for LogicMonitor 38

https://www.logicmonitor.com

Amazon Data Firehose Developer Guide

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for Logz.io

This section describes options for using Logz.io for your destination. For more information, see
https://logz.io/.

Configure destination settings for Logz.io 39

https://logz.io/

Amazon Data Firehose Developer Guide

Note

In the Europe (Milan) region, Logz.io is not supported as an Amazon Data Firehose
destination.

• Provide values for the following fields:

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format. The URL must be an HTTPS
URL.

https://listener-aws-metrics-stream-<region>.logz.io/

For example

https://listener-aws-metrics-stream-us.logz.io/

Authentication

You can either choose to enter the shipping token directly or retrieve the secret from AWS
Secrets Manager to access Logz.io.

• Shipping token

Contact Logz.io to obtain the shipping token that you need to enable data delivery to
this endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the shipping token for Logz.io. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Logz.io.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within Configure destination settings for Logz.io 40

Amazon Data Firehose Developer Guide

the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for MongoDB Cloud

This section describes options for using MongoDB Cloud for your destination. For more
information, see https://www.mongodb.com.

• Provide values for the following fields:

MongoDB Realm webhook URL

Specify the URL for the HTTP endpoint in the following format.

 https://webhooks.mongodb-realm.com

Configure destination settings for MongoDB Cloud 41

https://www.mongodb.com

Amazon Data Firehose Developer Guide

The URL must be an HTTPS URL.

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access MongoDB Cloud.

• API key

Contact MongoDB Cloud to obtain the API key that you need to enable data delivery to
this endpoint from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the API key for MongoDB Cloud.
If you do not see your secret in the drop-down list, create one in AWS Secrets Manager.
For more information, see Authenticate with AWS Secrets Manager in Amazon Data
Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected third-party
provider.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the

Configure destination settings for MongoDB Cloud 42

Amazon Data Firehose Developer Guide

acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Configure destination settings for New Relic

This section describes options for using New Relic for your destination. For more information, see
https://newrelic.com.

• Provide values for the following fields:

HTTP endpoint URL

Choose the HTTP endpoint URL from the following options in the drop-down list.

• New Relic logs - US

• New Relic metrics - US

• New Relic metrics - EU

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access New Relic.

• API key

Enter your License Key, which is a 40-characters hexadecimal string, from your New Relic
One Account settings. You need this API key to enable data delivery to this endpoint
from Firehose.Configure destination settings for New Relic 43

https://newrelic.com

Amazon Data Firehose Developer Guide

• Secret

Select a secret from AWS Secrets Manager that contains the API key for New Relic. If you
do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the New Relic HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Configure destination settings for New Relic 44

Amazon Data Firehose Developer Guide

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for Snowflake

This section describes options for using Snowflake for your destination.

Note

Firehose integration with Snowflake is available in the US East (N. Virginia), US West
(Oregon), Europe (Ireland), US East (Ohio), Asia Pacific (Tokyo), Europe (Frankfurt), Asia
Pacific (Singapore), Asia Pacific (Seoul), and Asia Pacific (Sydney), Asia Pacific (Mumbai),
Europe (London), South America (Sao Paulo), Canada (Central), Europe (Paris), Asia Pacific
(Osaka), Europe (Stockholm), Asia Pacific (Jakarta) AWS Regions.

Connection settings

• Provide values for the following fields:

Snowflake account URL

Specify a Snowflake account URL. For example: xy12345.us-
east-1.aws.snowflakecomputing.com. Refer to Snowflake documentation on how
to determine your account URL. Note that you mustn't specify the port number, whereas
protocol (https://) is optional.

Authentication

You can either choose to enter the userlogin, private key, and passphrase manually or
retrieve the secret from AWS Secrets Manager to access Snowflake.

• User login

Specify the Snowflake user to be used for loading data. Make sure the user has access to
insert data into the Snowflake table.

• Private key

Configure destination settings for Snowflake 45

https://docs.snowflake.com/en/user-guide/admin-account-identifier#format-2-legacy-account-locator-in-a-region

Amazon Data Firehose Developer Guide

Specify the private key for authentication with Snowflake in PKCS8 format. Additionally,
do not include PEM header and footer as part of the private key. If the key is split across
multiple lines, remove the line breaks. Following is an example of what your private key
must look like.

-----BEGIN PRIVATE KEY-----
KEY_CONTENT
-----END PRIVATE KEY-----

Remove the space in KEY_CONTENT and provide that to Firehose. No header/footer or
newline characters are required.

• Passphrase

Specify the passphrase to decrypt the encrypted private key. You can leave this
field empty if the private key is not encrypted. For information, see Using Key Pair
Authentication & Key Rotation.

• Secret

Select a secret from AWS Secrets Manager that contains the credentials for Snowflake. If
you do not see your secret in the drop-down list, create one in AWS Secrets Manager. For
more information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Role configuration

Use default Snowflake role – If this option is selected, Firehose will not pass any role to
Snowflake. Default role is assumed to load data. Please make sure the default role has
permission to insert data in to Snowflake table.

Use custom Snowflake role – Enter a non-default Snowflake role to be assumed by Firehose
when loading data into Snowflake table.

Snowflake connectivity

Options are Private or Public.

Private VPCE ID (optional)

The VPCE ID for Firehose to privately connect with Snowflake. The ID format is
com.amazonaws.vpce.[region].vpce-svc-[id]. For more information, see AWS PrivateLink &
Snowflake.

Configure destination settings for Snowflake 46

https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-configuration#using-key-pair-authentication-key-rotation
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-configuration#using-key-pair-authentication-key-rotation
https://docs.snowflake.com/en/user-guide/admin-security-privatelink
https://docs.snowflake.com/en/user-guide/admin-security-privatelink

Amazon Data Firehose Developer Guide

Note

If your Snowflake cluster is private link enabled, use AwsVpceIds-based network
policy to allow Amazon Data Firehose data. Firehose doesn't require you to
configure an IP-based network policy in your Snowflake account. Having an IP-
based network policy enabled could interfere with Firehose connectivity. If you
have an edge case that requires IP-based policy, contact the Firehose team by
submitting a support ticket. For a list of the VPCE IDs that you can use, refer to the
Accessing Snowflake in VPC.

Database configuration

• You must specify the following settings in order to use Snowflake as the destination for your
Firehose stream.

• Snowflake database – All data in Snowflake is maintained in databases.

• Snowflake schema – Each database consists of one or more schemas, which are logical
groupings of database objects, such as tables and views

• Snowflake table – All data in Snowflake is stored in database tables, logically structured as
collections of columns and rows.

Data loading options for your Snowflake table

• Use JSON keys as column names

• Use VARIANT columns

• Content column name – Specify a column name in the table, where the raw data has to be
loaded.

• Metadata column name (optional) – Specify a column name in the table, where the metadata
information has to be loaded. When you enable this field, you will see the following column in
the Snowflake table based on the source type.

For Direct PUT as source

{
"firehoseDeliveryStreamName" : "streamname",

Configure destination settings for Snowflake 47

https://support.console.aws.amazon.com/support/home?region=us-east-1#/case/create

Amazon Data Firehose Developer Guide

"IngestionTime" : "timestamp"
}

For Kinesis Data Stream as source

{
"kinesisStreamName" : "streamname",
"kinesisShardId" : "Id",
"kinesisPartitionKey" : "key",
"kinesisSequenceNumber" : "1234",
"subsequenceNumber" : "2334",
"IngestionTime" : "timestamp"
}

Retry duration

Time duration (0–7200 seconds) for Firehose to retry if either opening channel or delivery to
Snowflake fails due to Snowflake service issues. Firehose retries with exponential backoff until the
retry duration ends. If you set the retry duration to 0 (zero) seconds, Firehose does not retry upon
Snowflake failures and routes data to Amazon S3 error bucket.

Buffer hints

Amazon Data Firehose buffers incoming data before delivering it to the specified destination. The
recommended buffer size for the destination varies from service provider to service provider. For
more information, see Configure buffering hints.

Configure destination settings for Splunk

This section describes options for using Splunk for your destination.

Note

Firehose delivers data to Splunk clusters configured with Classic Load Balancer or an
Application Load Balancer.

• Provide values for the following fields:

Configure destination settings for Splunk 48

Amazon Data Firehose Developer Guide

Splunk cluster endpoint

To determine the endpoint, see Configure Amazon Data Firehose to Send Data to the
Splunk Platform in the Splunk documentation.

Splunk endpoint type

Choose Raw endpoint in most cases. Choose Event endpoint if you preprocessed your
data using AWS Lambda to send data to different indexes by event type. For information
about what endpoint to use, see Configure Amazon Data Firehose to send data to the
Splunk platform in the Splunk documentation.

Authentication

You can either choose to enter the authentication token directly or retrieve the secret from
AWS Secrets Manager to access Splunk.

• Authentication token

To set up a Splunk endpoint that can receive data from Amazon Data Firehose, see
Installation and configuration overview for the Splunk Add-on for Amazon Data Firehose
in the Splunk documentation. Save the token that you get from Splunk when you set up
the endpoint for this Firehose stream and add it here.

• Secret

Select a secret from AWS Secrets Manager that contains the authentication token for
Splunk. If you do not see your secret in the drop-down list, create one in AWS Secrets
Manager. For more information, see Authenticate with AWS Secrets Manager in Amazon
Data Firehose.

HEC acknowledgement timeout

Specify how long Amazon Data Firehose waits for the index acknowledgement from
Splunk. If Splunk doesn’t send the acknowledgment before the timeout is reached, Amazon
Data Firehose considers it a data delivery failure. Amazon Data Firehose then either retries
or backs up the data to your Amazon S3 bucket, depending on the retry duration value that
you set.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Splunk.

Configure destination settings for Splunk 49

http://docs.splunk.com/Documentation/AddOns/latest/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/latest/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Installationoverview

Amazon Data Firehose Developer Guide

After sending data, Amazon Data Firehose first waits for an acknowledgment from Splunk.
If an error occurs or the acknowledgment doesn’t arrive within the acknowledgment
timeout period, Amazon Data Firehose starts the retry duration counter. It keeps retrying
until the retry duration expires. After that, Amazon Data Firehose considers it a data
delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to Splunk (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from Splunk.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies based on the service
provider.

Configure destination settings for Splunk Observability Cloud

This section describes options for using Splunk Observability Cloud for your destination. For more
information, see https://docs.splunk.com/observability/en/gdi/get-data-in/connect/aws/aws-
apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api.

• Provide values for the following fields:

Cloud Ingest Endpoint URL

You can find your Splunk Observability Cloud’s Real-time Data Ingest URL in Profile >
Organizations > Real-time Data Ingest Endpoint in Splunk Observability console.

Configure destination settings for Splunk Observability Cloud 50

https://docs.splunk.com/Observability/gdi/get-data-in/connect/aws/aws-apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api
https://docs.splunk.com/Observability/gdi/get-data-in/connect/aws/aws-apiconfig.html#connect-to-aws-using-the-splunk-observability-cloud-api

Amazon Data Firehose Developer Guide

Authentication

You can either choose to enter the access token directly or retrieve the secret from AWS
Secrets Manager to access Splunk Observability Cloud.

• Access Token

Copy your Splunk Observability access token with INGEST authorization scope from
Access Tokens under Settings in Splunk Observability console.

• Secret

Select a secret from AWS Secrets Manager that contains the access token for Splunk
Observability Cloud. If you do not see your secret in the drop-down list, create one
in AWS Secrets Manager. For more information, see Authenticate with AWS Secrets
Manager in Amazon Data Firehose.

Content Encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to the selected HTTP
endpoint.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in

Configure destination settings for Splunk Observability Cloud 51

Amazon Data Firehose Developer Guide

the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the destination varies from service provider
to service provider.

Configure destination settings for Sumo Logic

This section describes options for using Sumo Logic for your destination. For more information, see
https://www.sumologic.com.

• Provide values for the following fields:

HTTP endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://deployment
name.sumologic.net/receiver/v1/kinesis/dataType/access token. The URL
must be an HTTPS URL.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP or Disabled to enable/disable content encoding
of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Sumo Logic.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration

Configure destination settings for Sumo Logic 52

https://www.sumologic.com

Amazon Data Firehose Developer Guide

counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the Elastic destination varies from service
provider to service provider.

Configure destination settings for Elastic

This section describes options for using Elastic for your destination.

• Provide values for the following fields:

Elastic endpoint URL

Specify the URL for the HTTP endpoint in the following format: https://<cluster-
id>.es.<region>.aws.elastic-cloud.com. The URL must be an HTTPS URL.

Authentication

You can either choose to enter the API key directly or retrieve the secret from AWS Secrets
Manager to access Elastic.

Configure destination settings for Elastic 53

Amazon Data Firehose Developer Guide

• API key

Contact Elastic to obtain the API key that you require to enable data delivery to their
service from Firehose.

• Secret

Select a secret from AWS Secrets Manager that contains the API key for Elastic. If you do
not see your secret in the drop-down list, create one in AWS Secrets Manager. For more
information, see Authenticate with AWS Secrets Manager in Amazon Data Firehose.

Content encoding

Amazon Data Firehose uses content encoding to compress the body of a request before
sending it to the destination. Choose GZIP (which is what selected by default) or Disabled
to enable/disable content encoding of your request.

Retry duration

Specify how long Amazon Data Firehose retries sending data to Elastic.

After sending data, Amazon Data Firehose first waits for an acknowledgment from
the HTTP endpoint. If an error occurs or the acknowledgment doesn’t arrive within
the acknowledgment timeout period, Amazon Data Firehose starts the retry duration
counter. It keeps retrying until the retry duration expires. After that, Amazon Data Firehose
considers it a data delivery failure and backs up the data to your Amazon S3 bucket.

Every time that Amazon Data Firehose sends data to the HTTP endpoint (either the initial
attempt or a retry), it restarts the acknowledgement timeout counter and waits for an
acknowledgement from the HTTP endpoint.

Even if the retry duration expires, Amazon Data Firehose still waits for the acknowledgment
until it receives it or the acknowledgement timeout period is reached. If the
acknowledgment times out, Amazon Data Firehose determines whether there's time left in
the retry counter. If there is time left, it retries again and repeats the logic until it receives
an acknowledgment or determines that the retry time has expired.

If you don't want Amazon Data Firehose to retry sending data, set this value to 0.

Configure destination settings for Elastic 54

Amazon Data Firehose Developer Guide

Parameters - optional

Amazon Data Firehose includes these key-value pairs in each HTTP call. These parameters
can help you identify and organize your destinations.

Buffering hints

Amazon Data Firehose buffers incoming data before delivering it to the specified
destination. The recommended buffer size for the Elastic destination is 1 MiB.

Configure backup settings

Amazon Data Firehose uses Amazon S3 to backup all or failed only data that it attempts to deliver
to your chosen destination.

Important

• Backup settings are only supported if the source for your Firehose stream is Direct PUT or
Kinesis Data Streams.

• Zero buffering feature is only available for the application destinations and is not
available for Amazon S3 backup destination.

You can specify the S3 backup settings for your Firehose stream if you made one of the following
choices.

• If you set Amazon S3 as the destination for your Firehose stream and you choose to specify an
AWS Lambda function to transform data records or if you choose to convert data record formats
for your Firehose stream.

• If you set Amazon Redshift as the destination for your Firehose stream and you choose to specify
an AWS Lambda function to transform data records.

• If you set any of the following services as the destination for your Firehose stream – Amazon
OpenSearch Service, Datadog, Dynatrace, HTTP Endpoint, LogicMonitor, MongoDB Cloud, New
Relic, Splunk, or Sumo Logic, Snowflake, Apache Iceberg Tables.

The following are the backup settings for your Firehose stream.

Configure backup settings 55

Amazon Data Firehose Developer Guide

• Source record backup in Amazon S3 - if S3 or Amazon Redshift is your selected destination, this
setting indicates whether you want to enable source data backup or keep it disabled. If any other
supported service (other than S3 or Amazon Redshift) is set as your selected destination, then
this setting indicates if you want to backup all your source data or failed data only.

• S3 backup bucket - this is the S3 bucket where Amazon Data Firehose backs up your data.

• S3 backup bucket prefix - this is the prefix where Amazon Data Firehose backs up your data.

• S3 backup bucket error output prefix - all failed data is backed up in the this S3 bucket error
output prefix.

• Buffering hints, compression and encryption for backup - Amazon Data Firehose uses Amazon S3
to backup all or failed only data that it attempts to deliver to your chosen destination. Amazon
Data Firehose buffers incoming data before delivering it (backing it up) to Amazon S3. You can
choose a buffer size of 1–128 MiBs and a buffer interval of 60–900 seconds. The condition that is
satisfied first triggers data delivery to Amazon S3. If you enable data transformation, the buffer
interval applies from the time transformed data is received by Amazon Data Firehose to the
data delivery to Amazon S3. If data delivery to the destination falls behind data writing to the
Firehose stream, Amazon Data Firehose raises the buffer size dynamically to catch up. This action
helps ensure that all data is delivered to the destination.

• S3 compression - choose GZIP, Snappy, Zip, or Hadoop-Compatible Snappy data compression, or
no data compression. Snappy, Zip, and Hadoop-Compatible Snappy compression is not available
for Firehose stream with Amazon Redshift as the destination.

• S3 file extension format (optional) – Specify a file extension format for objects delivered to
Amazon S3 destination bucket. If you enable this feature, specified file extension will override
default file extensions appended by Data Format Conversion or S3 compression features such
as .parquet or .gz. Make sure if you configured the right file extension when you use this feature
with Data Format Conversion or S3 compression. File extension must start with a period (.) and
can contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot exceed 128 characters.

• Firehose supports Amazon S3 server-side encryption with AWS Key Management Service (SSE-
KMS) for encrypting delivered data in Amazon S3. You can choose to use the default encryption
type specified in the destination S3 bucket or to encrypt with a key from the list of AWS KMS
keys that you own. If you encrypt the data with AWS KMS keys, you can use either the default
AWS managed key (aws/s3) or a customer managed key. For more information, see Protecting
Data Using Server-Side Encryption with AWS KMS-Managed Keys (SSE-KMS).

Configure backup settings 56

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

Configure buffering hints

Amazon Data Firehose buffers incoming streaming data in memory to a certain size (buffering
size) and for a certain period of time (buffering interval) before delivering it to the specified
destinations. You would use buffering hints when you want to deliver optimal sized files to Amazon
S3 and get better performance from data processing applications or to adjust Firehose delivery
rate to match destination speed.

You can configure the buffering size and the buffer interval while creating new Firehose streams
or update the buffering size and the buffering interval on your existing Firehose streams. Buffering
size is measured in MBs and buffering interval is measured in seconds. However, if you specify a
value for one of them, you must also provide a value for the other. The first buffer condition that is
satisfied triggers Firehose to deliver the data. If you don't configure the buffering values, then the
default values are used.

You can configure Firehose buffering hints through the AWS Management Console, AWS Command
Line Interface, or AWS SDKs. For existing streams, you can reconfigure buffering hints with a value
that suits your use cases using the Edit option in the console or using the UpdateDestination
API. For new streams, you can configure buffering hints as part of new stream creation using the
console or using the CreateDeliveryStream API. To adjust the buffering size, set SizeInMBs and
IntervalInSeconds in the destination specific DestinationConfiguration parameter of the
CreateDeliveryStream or UpdateDestination API.

Note

• Buffer hints are applied on a shard or partition level, while dynamic partitioning buffer
hints are applied on stream or topic level.

• To meet lower latencies of real-time use cases, you can use zero buffering interval hint.
When you configure buffering interval as zero seconds, Firehose will not buffer data
and will deliver data within a few seconds. Before you change buffering hints to a lower
value, check with the vendor for recommended buffering hints of Firehose for their
destinations.

• Zero buffering feature is only available for the application destinations and is not
available for Amazon S3 backup destination.

• Zero buffering feature is not available for dynamic partitioning.

• Firehose uses multi-part upload for S3 destination when you configure a buffer time
interval less than 60 seconds to offer lower latencies. Due to multi-part upload for S3

Configure buffering hints 57

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html

Amazon Data Firehose Developer Guide

destination, you will see some increase in S3 PUT API costs if you choose a buffer time
interval less than 60 seconds.

For destination specific buffering hint ranges and default values, see the following table:

Destination Buffering size in MB (default in parenthesis) Buffering
interval in
seconds (default
in parenthesis)

Amazon S3 1-128 (5) 0-900 (300)

Apache Iceberg
Tables

1-128 (5) 0-900 (300)

Amazon Redshift 1-128 (5) 0-900 (300)

OpenSearch
Serverless

1-100 (5) 0-900 (300)

OpenSearch 1-100 (5) 0-900 (300)

Splunk 1-5 (5) 0-60 (60)

Datadog 1-4 (4) 0-900 (60)

Coralogix 1-64 (6) 0-900 (60)

Dynatrace 1-64 (5) 0-900 (60)

Elastic 1 0-900 (60)

Honeycomb 1-64 (15) 0-900 (60)

HTTP endpoint 1-64 (5) 0-900 (60)

LogicMonitor 1-64 (5) 0-900 (60)

Logzio 1-64 (5) 0-900 (60)

Configure buffering hints 58

Amazon Data Firehose Developer Guide

Destination Buffering size in MB (default in parenthesis) Buffering
interval in
seconds (default
in parenthesis)

mongoDB 1-16 (5) 0-900 (60)

newRelic 1-64 (5) 0-900 (60)

sumoLogic 1-64 (1) 0-900 (60)

Splunk Observabi
lity Cloud

1-64 (1) 0-900 (60)

Snowflake 1 - 128 (1) 0 - 900 (0)

Configure advanced settings

The following section contains details about the advanced settings for your Firehose stream.

• Server-side encryption - Amazon Data Firehose supports Amazon S3 server-side encryption with
AWS Key Management Service (AWS KMS) for encrypting delivered data in Amazon S3. For more
information, see Protecting Data Using Server-Side Encryption with AWS KMS–Managed Keys
(SSE-KMS).

• Error logging - Amazon Data Firehose logs errors related to processing and delivery. Additionally,
when data transformation is enabled, it can log Lambda invocations and send data delivery
errors to CloudWatch Logs. For more information, see Monitor Amazon Data Firehose Using
CloudWatch Logs.

Important

While optional, enabling Amazon Data Firehose error logging during Firehose stream
creation is strongly recommended. This practice ensures that you can access error details
in case of record processing or delivery failures.

• Permissions - Amazon Data Firehose uses IAM roles for all the permissions that the Firehose
stream needs. You can choose to create a new role where required permissions are assigned
automatically, or choose an existing role created for Amazon Data Firehose. The role is used

Configure advanced settings 59

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon Data Firehose Developer Guide

to grant Firehose access to various services, including your S3 bucket, AWS KMS key (if data
encryption is enabled), and Lambda function (if data transformation is enabled). The console
might create a role with placeholders. For more information, see What is IAM?.

Note

The IAM role (including placeholders) is created based on the configuration you choose
when creating a Firehose stream. If you make any changes to the Firehose stream source
or destination, you must manually update the IAM role.

• Tags - You can add tags to organize your AWS resources, track costs, and control access.

If you specify tags in the CreateDeliveryStream action, Amazon Data Firehose performs an
additional authorization on the firehose:TagDeliveryStream action to verify if users have
permissions to create tags. If you do not provide this permission, requests to create new Firehose
streams with IAM resource tags will fail with an AccessDeniedException such as following.

AccessDeniedException
User: arn:aws:sts::x:assumed-role/x/x is not authorized to perform:
 firehose:TagDeliveryStream on resource: arn:aws:firehose:us-east-1:x:deliverystream/
x with an explicit deny in an identity-based policy.

The following example demonstrates a policy that allows users to create a Firehose stream and
apply tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:CreateDeliveryStream",
 "Resource": "*",
 }
 },
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 }
 }

Configure advanced settings 60

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Data Firehose Developer Guide

]
}

Once you've chosen your backup and advanced settings, review your choices, and then choose
Create Firehose stream.

The new Firehose stream takes a few moments in the Creating state before it is available. After
your Firehose stream is in an Active state, you can start sending data to it from your producer.

Configure advanced settings 61

Amazon Data Firehose Developer Guide

Testing Firehose stream with sample data

You can use the AWS Management Console to ingest simulated stock ticker data. The console runs
a script in your browser to put sample records in your Firehose stream. This enables you to test the
configuration of your Firehose stream without having to generate your own test data.

The following is an example from the simulated data:

{"TICKER_SYMBOL":"QXZ","SECTOR":"HEALTHCARE","CHANGE":-0.05,"PRICE":84.51}

Note that standard Amazon Data Firehose charges apply when your Firehose stream transmits the
data, but there is no charge when the data is generated. To stop incurring these charges, you can
stop the sample stream from the console at any time.

Prerequisites

Before you begin, create a Firehose stream. For more information, see Tutorial: Create a Firehose
stream from console.

Test with Amazon S3

Use the following procedure to test your Firehose stream with Amazon Simple Storage Service
(Amazon S3) as the destination.

To test a Firehose stream using Amazon S3

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose an active Firehose stream. The Firehose stream must be in Active status before you can
start sending data.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Follow the onscreen instructions to verify that data is being delivered to your S3 bucket.
Note that it might take a few minutes for new objects to appear in your bucket, based on the
buffering configuration of your bucket.

5. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

Prerequisites 62

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

Test with Amazon Redshift

Use the following procedure to test your Firehose stream with Amazon Redshift as the destination.

To test a Firehose stream using Amazon Redshift

1. Your Firehose stream expects a table to be present in your Amazon Redshift cluster. Connect
to Amazon Redshift through a SQL interface and run the following statement to create a table
that accepts the sample data.

create table firehose_test_table
(
 TICKER_SYMBOL varchar(4),
 SECTOR varchar(16),
 CHANGE float,
 PRICE float
);

2. Open the Firehose console at https://console.aws.amazon.com/firehose/.

3. Choose an active Firehose stream. The Firehose stream must be in Active status before you can
start sending data.

4. Edit the destination details for your Firehose stream to point to the newly created
firehose_test_table table.

5. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

6. Follow the onscreen instructions to verify that data is being delivered to your table. Note
that it might take a few minutes for new rows to appear in your table, based on the buffering
configuration.

7. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

8. Edit the destination details for your Firehose stream to point to another table.

9. (Optional) Delete the firehose_test_table table.

Test with OpenSearch Service

Use the following procedure to test your Firehose stream using Amazon OpenSearch Service as the
destination.

Test with Amazon Redshift 63

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

To test a Firehose stream using OpenSearch Service

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose an active Firehose stream. The Firehose stream must be in Active status before you can
start sending data.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Follow the onscreen instructions to verify that data is being delivered to your OpenSearch
Service domain. For more information, see Searching Documents in an OpenSearch Service
Domain in the Amazon OpenSearch Service Developer Guide.

5. When the test is complete, choose Stop sending demo data to stop incurring usage charges.

Test with Splunk

Use the following procedure to test your Firehose stream using Splunk as the destination.

To test a Firehose stream using Splunk

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose an active Firehose stream. The Firehose stream must be in Active status before you can
start sending data.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Check whether the data is being delivered to your Splunk index. Example search terms in
Splunk are sourcetype="aws:firehose:json" and index="name-of-your-splunk-
index". For more information about how to search for events in Splunk, see Search Manual in
the Splunk documentation.

If the test data doesn't appear in your Splunk index, check your Amazon S3 bucket for failed
events. Also see Data Not Delivered to Splunk.

5. When you finish testing, choose Stop sending demo data to stop incurring usage charges.

Test with Splunk 64

https://console.aws.amazon.com/firehose/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://console.aws.amazon.com/firehose/
http://docs.splunk.com/Documentation/Splunk/latest/Search/GetstartedwithSearch
https://docs.aws.amazon.com/firehose/latest/dev/troubleshooting.html#data-not-delivered-to-splunk

Amazon Data Firehose Developer Guide

Test with Apache Iceberg Tables

Use the following procedure to test your Firehose stream with Apache Iceberg Tables as the
destination.

To test a Firehose stream using Apache Iceberg Tables

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose an active Firehose stream. The Firehose stream must be in Active status before you can
start sending data.

3. Under Test with demo data, choose Start sending demo data to generate sample stock ticker
data.

4. Follow the instructions on screen to verify that data is being delivered to your Apache Iceberg
Tables. Note that it might take a few minutes for new objects to appear in your bucket, based
on its buffering configuration.

5. If the test data doesn't appear in your Apache Iceberg Tables, check your Amazon S3 bucket
for failed events.

6. When you finish testing, choose Stop sending demo data to stop incurring usage charges.

Test with Apache Iceberg Tables 65

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

Send data to a Firehose stream

This section describes how you can use different data sources to send data to your Firehose stream.
If you are new to Amazon Data Firehose, take some time to become familiar with the concepts and
terminology presented in What is Amazon Data Firehose?.

Note

Some AWS services can only send messages and events to a Firehose stream that is in the
same Region. If your Firehose stream doesn't appear as an option when you're configuring
a target for Amazon CloudWatch Logs, CloudWatch Events, or AWS IoT, verify that your
Firehose stream is in the same Region as your other services. For information on service
endpoints for each Region, see Amazon Data Firehose endpoints.

You can send data to your Firehose stream from the following data sources.

Topics

• Configure Kinesis agent to send data

• Send data with AWS SDK

• Send CloudWatch Logs to Firehose

• Send CloudWatch Events to Firehose

• Configure AWS IoT to send data to Firehose

Configure Kinesis agent to send data

Amazon Kinesis agent is a standalone Java software application that serves as a reference
implementation to show how you can collect and send data to Firehose. The agent continuously
monitors a set of files and sends new data to your Firehose stream. The agent shows how you can
handle file rotation, checkpointing, and retry upon failures. It shows how you can deliver your data
in a reliable, timely, and simple manner. It also shows how you can emit CloudWatch metrics to
better monitor and troubleshoot the streaming process. To learn more, awslabs/amazon-kinesis-
agent.

By default, records are parsed from each file based on the newline ('\n') character. However, the
agent can also be configured to parse multi-line records (see Specify agent configuration settings).

Configure Kinesis agent to send data 66

https://docs.aws.amazon.com/general/latest/gr/fh.html#fh_region
https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/amazon-kinesis-agent

Amazon Data Firehose Developer Guide

You can install the agent on Linux-based server environments such as web servers, log servers, and
database servers. After installing the agent, configure it by specifying the files to monitor and the
Firehose stream for the data. After the agent is configured, it durably collects data from the files
and reliably sends it to the Firehose stream.

Prerequisites

Before you start using Kinesis Agent, make sure you meet the following prerequisites.

• Your operating system must be Amazon Linux, or Red Hat Enterprise Linux version 7 or later.

• Agent version 2.0.0 or later runs using JRE version 1.8 or later. Agent version 1.1.x runs using JRE
1.7 or later.

• If you are using Amazon EC2 to run your agent, launch your EC2 instance.

• The IAM role or AWS credentials that you specify must have permission to perform the Amazon
Data Firehose PutRecordBatch operation for the agent to send data to your Firehose stream.
If you enable CloudWatch monitoring for the agent, permission to perform the CloudWatch
PutMetricData operation is also needed. For more information, see Controlling access with
Amazon Data Firehose, Monitor Kinesis Agent health, and Authentication and Access Control for
Amazon CloudWatch.

Manage AWS credentials

Manage your AWS credentials using one of the following methods:

• Create a custom credentials provider. For details, see the section called “Create custom credential
providers”.

• Specify an IAM role when you launch your EC2 instance.

• Specify AWS credentials when you configure the agent (see the entries for awsAccessKeyId
and awsSecretAccessKey in the configuration table under the section called “Specify agent
configuration settings”).

• Edit /etc/sysconfig/aws-kinesis-agent to specify your AWS Region and AWS access keys.

• If your EC2 instance is in a different AWS account, create an IAM role to provide access to
the Amazon Data Firehose service. Specify that role when you configure the agent (see
assumeRoleARN and assumeRoleExternalId). Use one of the previous methods to specify the
AWS credentials of a user in the other account who has permission to assume this role.

Prerequisites 67

https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

Amazon Data Firehose Developer Guide

Create custom credential providers

You can create a custom credentials provider and give its class name and jar path to the Kinesis
agent in the following configuration settings: userDefinedCredentialsProvider.classname
and userDefinedCredentialsProvider.location. For the descriptions of these two
configuration settings, see the section called “Specify agent configuration settings”.

To create a custom credentials provider, define a class that implements the
AWSCredentialsProvider interface, like the one in the following example.

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.auth.BasicAWSCredentials;

public class YourClassName implements AWSCredentialsProvider {
 public YourClassName() {
 }

 public AWSCredentials getCredentials() {
 return new BasicAWSCredentials("key1", "key2");
 }

 public void refresh() {
 }
}

Your class must have a constructor that takes no arguments.

AWS invokes the refresh method periodically to get updated credentials. If you want your
credentials provider to provide different credentials throughout its lifetime, include code to refresh
the credentials in this method. Alternatively, you can leave this method empty if you want a
credentials provider that vends static (non-changing) credentials.

Download and install the Agent

First, connect to your instance. For more information, see Connect to Your Instance in the Amazon
EC2 User Guide. If you have trouble connecting, see Troubleshooting Connecting to Your Instance in
the Amazon EC2 User Guide.

Next, install the agent using one of the following methods.

Create custom credential providers 68

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon Data Firehose Developer Guide

• To set up the agent from the Amazon Linux repositories

This method works only for Amazon Linux instances. Use the following command:

sudo yum install –y aws-kinesis-agent

Agent v 2.0.0 or later is installed on computers with operating system Amazon Linux 2 (AL2).
This agent version requires Java 1.8 or later. If required Java version is not yet present, the agent
installation process installs it. For more information regarding Amazon Linux 2 see https://
aws.amazon.com/amazon-linux-2/.

• To set up the agent from the Amazon S3 repository

This method works for Red Hat Enterprise Linux, as well as Amazon Linux 2 instances because
it installs the agent from the publicly available repository. Use the following command to
download and install the latest version of the agent version 2.x.x:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-
latest.amzn2.noarch.rpm

To install a specific version of the agent, specify the version number in the command. For
example, the following command installs agent v 2.0.1.

sudo yum install –y https://streaming-data-agent.s3.amazonaws.com/aws-kinesis-
agent-2.0.1-1.amzn1.noarch.rpm

If you have Java 1.7 and you don’t want to upgrade it, you can download agent version 1.x.x,
which is compatible with Java 1.7. For example, to download agent v1.1.6, you can use the
following command:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-
agent-1.1.6-1.amzn1.noarch.rpm

Download and install the Agent 69

https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/

Amazon Data Firehose Developer Guide

You can download the latest agent with the following command

sudo yum install -y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-
latest.amzn2.noarch.rpm

• To set up the agent from the GitHub repo

1. First, make sure that you have required Java version installed, depending on agent version.

2. Download the agent from the awslabs/amazon-kinesis-agent GitHub repo.

3. Install the agent by navigating to the download directory and running the following
command:

sudo ./setup --install

• To set up the agent in a Docker container

Kinesis Agent can be run in a container as well via the amazonlinux container base. Use the
following Dockerfile and then run docker build.

FROM amazonlinux

RUN yum install -y aws-kinesis-agent which findutils
COPY agent.json /etc/aws-kinesis/agent.json

CMD ["start-aws-kinesis-agent"]

Configure and start the Agent

To configure and start the agent

1. Open and edit the configuration file (as superuser if using default file access permissions): /
etc/aws-kinesis/agent.json

In this configuration file, specify the files ("filePattern") from which the agent collects
data, and the name of the Firehose stream ("deliveryStream") to which the agent sends
data. The file name is a pattern, and the agent recognizes file rotations. You can rotate files or

Configure and start the Agent 70

https://github.com/awslabs/amazon-kinesis-agent
https://docs.aws.amazon.com/AmazonECR/latest/userguide/amazon_linux_container_image.html

Amazon Data Firehose Developer Guide

create new files no more than once per second. The agent uses the file creation time stamp to
determine which files to track and tail into your Firehose stream. Creating new files or rotating
files more frequently than once per second does not allow the agent to differentiate properly
between them.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "yourdeliverystream"
 }
]
}

The default AWS Region is us-east-1. If you are using a different Region, add the
firehose.endpoint setting to the configuration file, specifying the endpoint for your
Region. For more information, see Specify agent configuration settings.

2. Start the agent manually:

sudo service aws-kinesis-agent start

3. (Optional) Configure the agent to start on system startup:

sudo chkconfig aws-kinesis-agent on

The agent is now running as a system service in the background. It continuously monitors the
specified files and sends data to the specified Firehose stream. Agent activity is logged in /var/
log/aws-kinesis-agent/aws-kinesis-agent.log.

Specify agent configuration settings

The agent supports two mandatory configuration settings, filePattern and deliveryStream,
plus optional configuration settings for additional features. You can specify both mandatory and
optional configuration settings in /etc/aws-kinesis/agent.json.

Whenever you change the configuration file, you must stop and start the agent, using the
following commands:

sudo service aws-kinesis-agent stop

Specify agent configuration settings 71

Amazon Data Firehose Developer Guide

sudo service aws-kinesis-agent start

Alternatively, you could use the following command:

sudo service aws-kinesis-agent restart

The following are the general configuration settings.

Configuration
Setting

Description

assumeRoleARN The Amazon Resource Name (ARN) of the role to be assumed by the
user. For more information, see Delegate Access Across AWS Accounts
Using IAM Roles in the IAM User Guide.

assumeRol
eExternalId

An optional identifier that determines who can assume the role. For
more information, see How to Use an External ID in the IAM User Guide.

awsAccessKeyId AWS access key ID that overrides the default credentials. This setting
takes precedence over all other credential providers.

awsSecret
AccessKey

AWS secret key that overrides the default credentials. This setting takes
precedence over all other credential providers.

cloudwatc
h.emitMetrics

Enables the agent to emit metrics to CloudWatch if set (true).

Default: true

cloudwatc
h.endpoint

The regional endpoint for CloudWatch.

Default: monitoring.us-east-1.amazonaws.com

firehose.
endpoint

The regional endpoint for Amazon Data Firehose.

Default: firehose.us-east-1.amazonaws.com

sts.endpoint The regional endpoint for the AWS Security Token Service.

Default: https://sts.amazonaws.com

Specify agent configuration settings 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

userDefin
edCredent
ialsProvi
der.classname

If you define a custom credentials provider, provide its fully-qualified
class name using this setting. Don't include .class at the end of the
class name.

userDefin
edCredent
ialsProvi
der.location

If you define a custom credentials provider, use this setting to specify
the absolute path of the jar that contains the custom credentials
provider. The agent also looks for the jar file in the following location: /
usr/share/aws-kinesis-agent/lib/ .

The following are the flow configuration settings.

Configuration
Setting

Description

aggregate
dRecordSi
zeBytes

To make the agent aggregate records and then put them to the
Firehose stream in one operation, specify this setting. Set it to the size
that you want the aggregate record to have before the agent puts it to
the Firehose stream.

Default: 0 (no aggregation)

dataProce
ssingOptions

The list of processing options applied to each parsed record before it
is sent to the Firehose stream. The processing options are performed
in the specified order. For more information, see Pre-process data with
Agents.

deliveryStream [Required] The name of the Firehose stream.

filePattern [Required] A glob for the files that need to be monitored by the
agent. Any file that matches this pattern is picked up by the agent
automatically and monitored. For all files matching this pattern, grant
read permission to aws-kinesis-agent-user . For the directory

Specify agent configuration settings 73

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

containing the files, grant read and execute permissions to aws-kines
is-agent-user .

Important

The agent picks up any file that matches this pattern. To ensure
that the agent doesn't pick up unintended records, choose this
pattern carefully.

initialPosition The initial position from which the file started to be parsed. Valid
values are START_OF_FILE and END_OF_FILE .

Default: END_OF_FILE

maxBuffer
AgeMillis

The maximum time, in milliseconds, for which the agent buffers data
before sending it to the Firehose stream.

Value range: 1,000–900,000 (1 second to 15 minutes)

Default: 60,000 (1 minute)

maxBuffer
SizeBytes

The maximum size, in bytes, for which the agent buffers data before
sending it to the Firehose stream.

Value range: 1–4,194,304 (4 MB)

Default: 4,194,304 (4 MB)

maxBuffer
SizeRecords

The maximum number of records for which the agent buffers data
before sending it to the Firehose stream.

Value range: 1–500

Default: 500

Specify agent configuration settings 74

Amazon Data Firehose Developer Guide

Configuration
Setting

Description

minTimeBe
tweenFile
PollsMillis

The time interval, in milliseconds, at which the agent polls and parses
the monitored files for new data.

Value range: 1 or more

Default: 100

multiLine
StartPattern

The pattern for identifying the start of a record. A record is made of a
line that matches the pattern and any following lines that don't match
the pattern. The valid values are regular expressions. By default, each
new line in the log files is parsed as one record.

skipHeaderLines The number of lines for the agent to skip parsing at the beginning of
monitored files.

Value range: 0 or more

Default: 0 (zero)

truncated
RecordTer
minator

The string that the agent uses to truncate a parsed record when the
record size exceeds the Amazon Data Firehose record size limit. (1,000
KB)

Default: '\n' (newline)

Configure multiple file directories and streams

By specifying multiple flow configuration settings, you can configure the agent to monitor multiple
file directories and send data to multiple streams. In the following configuration example, the
agent monitors two file directories and sends data to a Kinesis data stream and a Firehose stream
respectively. You can specify different endpoints for Kinesis Data Streams and Amazon Data
Firehose so that your data stream and Firehose stream don’t need to be in the same Region.

{
 "cloudwatch.emitMetrics": true,
 "kinesis.endpoint": "https://your/kinesis/endpoint",

Configure multiple file directories and streams 75

Amazon Data Firehose Developer Guide

 "firehose.endpoint": "https://your/firehose/endpoint",
 "flows": [
 {
 "filePattern": "/tmp/app1.log*",
 "kinesisStream": "yourkinesisstream"
 },
 {
 "filePattern": "/tmp/app2.log*",
 "deliveryStream": "yourfirehosedeliverystream"
 }
]
}

For more detailed information about using the agent with Amazon Kinesis Data Streams, see
Writing to Amazon Kinesis Data Streams with Kinesis Agent.

Pre-process data with Agents

The agent can pre-process the records parsed from monitored files before sending them to
your Firehose stream. You can enable this feature by adding the dataProcessingOptions
configuration setting to your file flow. One or more processing options can be added, and they are
performed in the specified order.

The agent supports the following processing options. Because the agent is open source, you can
further develop and extend its processing options. You can download the agent from Kinesis Agent.

Processing Options

SINGLELINE

Converts a multi-line record to a single-line record by removing newline characters, leading
spaces, and trailing spaces.

{
 "optionName": "SINGLELINE"
}

CSVTOJSON

Converts a record from delimiter-separated format to JSON format.

{

Pre-process data with Agents 76

https://docs.aws.amazon.com/kinesis/latest/dev/writing-with-agents.html
https://github.com/awslabs/amazon-kinesis-agent

Amazon Data Firehose Developer Guide

 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", ...],
 "delimiter": "yourdelimiter"
}

customFieldNames

[Required] The field names used as keys in each JSON key value pair. For example, if you
specify ["f1", "f2"], the record "v1, v2" is converted to {"f1":"v1","f2":"v2"}.

delimiter

The string used as the delimiter in the record. The default is a comma (,).

LOGTOJSON

Converts a record from a log format to JSON format. The supported log formats are Apache
Common Log, Apache Combined Log, Apache Error Log, and RFC3164 Syslog.

{
 "optionName": "LOGTOJSON",
 "logFormat": "logformat",
 "matchPattern": "yourregexpattern",
 "customFieldNames": ["field1", "field2", …]
}

logFormat

[Required] The log entry format. The following are possible values:

• COMMONAPACHELOG — The Apache Common Log format. Each log entry has the
following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes}".

• COMBINEDAPACHELOG — The Apache Combined Log format. Each log entry has the
following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes} %{referrer} %{agent}".

• APACHEERRORLOG — The Apache Error Log format. Each log entry has the following
pattern by default: "[%{timestamp}] [%{module}:%{severity}] [pid
%{processid}:tid %{threadid}] [client: %{client}] %{message}".

• SYSLOG — The RFC3164 Syslog format. Each log entry has the following pattern
by default: "%{timestamp} %{hostname} %{program}[%{processid}]:
%{message}".

Pre-process data with Agents 77

Amazon Data Firehose Developer Guide

matchPattern

Overrides the default pattern for the specified log format. Use this setting to extract values
from log entries if they use a custom format. If you specify matchPattern, you must also
specify customFieldNames.

customFieldNames

The custom field names used as keys in each JSON key value pair. You can use this setting to
define field names for values extracted from matchPattern, or override the default field
names of predefined log formats.

Example : LOGTOJSON Configuration

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to
JSON format:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
}

Before conversion:

64.242.88.10 - - [07/Mar/2004:16:10:02 -0800] "GET /mailman/listinfo/hsdivision
 HTTP/1.1" 200 6291

After conversion:

{"host":"64.242.88.10","ident":null,"authuser":null,"datetime":"07/
Mar/2004:16:10:02 -0800","request":"GET /mailman/listinfo/hsdivision
 HTTP/1.1","response":"200","bytes":"6291"}

Example : LOGTOJSON Configuration With Custom Fields

Here is another example LOGTOJSON configuration:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "customFieldNames": ["f1", "f2", "f3", "f4", "f5", "f6", "f7"]

Pre-process data with Agents 78

Amazon Data Firehose Developer Guide

}

With this configuration setting, the same Apache Common Log entry from the previous example is
converted to JSON format as follows:

{"f1":"64.242.88.10","f2":null,"f3":null,"f4":"07/Mar/2004:16:10:02 -0800","f5":"GET /
mailman/listinfo/hsdivision HTTP/1.1","f6":"200","f7":"6291"}

Example : Convert Apache Common Log Entry

The following flow configuration converts an Apache Common Log entry to a single-line record in
JSON format:

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "my-delivery-stream",
 "dataProcessingOptions": [
 {
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
 }
]
 }
]
}

Example : Convert Multi-Line Records

The following flow configuration parses multi-line records whose first line starts with
"[SEQUENCE=". Each record is first converted to a single-line record. Then, values are
extracted from the record based on a tab delimiter. Extracted values are mapped to specified
customFieldNames values to form a single-line record in JSON format.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "deliveryStream": "my-delivery-stream",
 "multiLineStartPattern": "\\[SEQUENCE=",
 "dataProcessingOptions": [

Pre-process data with Agents 79

Amazon Data Firehose Developer Guide

 {
 "optionName": "SINGLELINE"
 },
 {
 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", "field3"],
 "delimiter": "\\t"
 }
]
 }
]
}

Example : LOGTOJSON Configuration with Match Pattern

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to
JSON format, with the last field (bytes) omitted:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "matchPattern": "^([\\d.]+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.
+?)\" (\\d{3})",
 "customFieldNames": ["host", "ident", "authuser", "datetime", "request",
 "response"]
}

Before conversion:

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html HTTP/1.0"
 200

After conversion:

{"host":"123.45.67.89","ident":null,"authuser":null,"datetime":"27/Oct/2000:09:27:09
 -0400","request":"GET /java/javaResources.html HTTP/1.0","response":"200"}

Use common Agent CLI commands

The following table provides a set of common use cases and corresponding commands for working
with the AWS Kinesis agent.

Use common Agent CLI commands 80

Amazon Data Firehose Developer Guide

Use case Command

Automatically start
the agent on system
start up

sudo chkconfig aws-kinesis-agent on

Check the status of
the agent

sudo service aws-kinesis-agent status

Stop the agent sudo service aws-kinesis-agent stop

Read the agent's log
file from this location

/var/log/aws-kinesis-agent/aws-kinesis-agent.log

Uninstall the agent sudo yum remove aws-kinesis-agent

Troubleshoot issues when sending from Kinesis Agent

This table provides troubleshooting information and solutions for common issues faced when using
the Amazon Kinesis Agent.

Issue Solution

Why does Kinesis Agent not work
on Windows?

Kinesis Agent for Windows is different software than
Kinesis Agent for Linux platforms.

Why is Kinesis Agent slowing down
and/or RecordSendErrors
increasing?

This is usually due to throttling from Kinesis. Check the
WriteProvisionedThroughputExceeded metric
for Kinesis Data Streams or the ThrottledRecords
metric for Firehose streams. Any increase from 0 in
these metrics indicates that the stream limits need to be
increased. For more information, see Kinesis Data Stream
limits and Firehose streams.

Once you rule out throttling, see if the Kinesis Agent is
configured to tail a large amount of small files. There

Troubleshoot issues when sending from Kinesis Agent 81

https://docs.aws.amazon.com/kinesis-agent-windows/latest/userguide/what-is-kinesis-agent-windows.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/firehose/latest/dev/limits.html

Amazon Data Firehose Developer Guide

Issue Solution

is a delay when Kinesis Agent tails a new file, so Kinesis
Agent should be tailing a small amount of larger files.
Try consolidating your log files into larger files.

How to resolve the java.lang
.OutOfMemoryError exception
s?

This happends when Kinesis Agent does not have enough
memory to handle its current workload. Try increasing
JAVA_START_HEAP and JAVA_MAX_HEAP in /usr/
bin/start-aws-kinesis-agent and restarting
the agent.

How to resolve the IllegalSt
ateException : connectio
n pool shut down exceptions?

Kinesis Agent does not have enough connections to
handle its current workload. Try increasing maxConnec
tions and maxSendingThreads in your general
agent configuration settings at /etc/aws-kinesis/
agent.json . The default value for these fields is 12
times the runtime processors available. See AgentConf
iguration.java for more about advanced agent configura
tions settings.

How can I debug another issue with
Kinesis Agent?

DEBUG level logs can be enabled in /etc/aws-
kinesis/log4j.xml .

How should I configure Kinesis
Agent?

The smaller the maxBufferSizeBytes , the more
frequently Kinesis Agent will send data. This can be
good as it decreases delivery time of records, but it also
increases the requests per second to Kinesis.

Why is Kinesis Agent sending
duplicate records?

This occurs due to a misconfiguration in file tailing. Make
sure that each fileFlow’s filePattern is only
matching one file. This can also occur if the logrotate

 mode being used is in copytruncate mode. Try
changing the mode to the default or create mode to
avoid duplication. For more information on handling
duplicate records, see Handling Duplicate Records.

Troubleshoot issues when sending from Kinesis Agent 82

https://github.com/awslabs/amazon-kinesis-agent/blob/master/src/com/amazon/kinesis/streaming/agent/config/AgentConfiguration.java
https://github.com/awslabs/amazon-kinesis-agent/blob/master/src/com/amazon/kinesis/streaming/agent/config/AgentConfiguration.java
https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html

Amazon Data Firehose Developer Guide

Send data with AWS SDK

You can use the Amazon Data Firehose API to send data to a Firehose stream using the AWS SDK
for Java, .NET, Node.js, Python, or Ruby. If you are new to Amazon Data Firehose, take some
time to become familiar with the concepts and terminology presented in What is Amazon Data
Firehose?. For more information, see Start Developing with Amazon Web Services.

These examples do not represent production-ready code, in that they do not check for all possible
exceptions, or account for all possible security or performance considerations.

The Amazon Data Firehose API offers two operations for sending data to your Firehose stream:
PutRecord and PutRecordBatch. PutRecord() sends one data record within one call and
PutRecordBatch() can send multiple data records within one call.

Single write operations using PutRecord

Putting data requires only the Firehose stream name and a byte buffer (<=1000 KB). Because
Amazon Data Firehose batches multiple records before loading the file into Amazon S3, you may
want to add a record separator. To put data one record at a time into a Firehose stream, use the
following code:

PutRecordRequest putRecordRequest = new PutRecordRequest();
putRecordRequest.setDeliveryStreamName(deliveryStreamName);

String data = line + "\n";

Record record = new Record().withData(ByteBuffer.wrap(data.getBytes()));
putRecordRequest.setRecord(record);

// Put record into the DeliveryStream
firehoseClient.putRecord(putRecordRequest);

For more code context, see the sample code included in the AWS SDK. For information about
request and response syntax, see the relevant topic in Firehose API Operations.

Batch write operations using PutRecordBatch

Putting data requires only the Firehose stream name and a list of records. Because Amazon Data
Firehose batches multiple records before loading the file into Amazon S3, you may want to add a
record separator. To put data records in batches into a Firehose stream, use the following code:

Send data with AWS SDK 83

https://docs.aws.amazon.com/firehose/latest/APIReference/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-ruby/
http://aws.amazon.com/developers/getting-started/
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html

Amazon Data Firehose Developer Guide

PutRecordBatchRequest putRecordBatchRequest = new PutRecordBatchRequest();
putRecordBatchRequest.setDeliveryStreamName(deliveryStreamName);
putRecordBatchRequest.setRecords(recordList);

// Put Record Batch records. Max No.Of Records we can put in a
// single put record batch request is 500
firehoseClient.putRecordBatch(putRecordBatchRequest);

recordList.clear();

For more code context, see the sample code included in the AWS SDK. For information about
request and response syntax, see the relevant topic in Firehose API Operations.

Send CloudWatch Logs to Firehose

CloudWatch Logs events can be sent to Firehose using CloudWatch subscription filters. For more
information, see Subscription filters with Amazon Data Firehose.

CloudWatch Logs events are sent to Firehose in compressed gzip format. If you want to deliver
decompressed log events to Firehose destinations, you can use the decompression feature in
Firehose to automatically decompress CloudWatch Logs.

Important

Currently, Firehose does not support the delivery of CloudWatch Logs to Amazon
OpenSearch Service destination because Amazon CloudWatch combines multiple log
events into one Firehose record and Amazon OpenSearch Service cannot accept multiple
log events in one record. As an alternative, you can consider Using subscription filter for
Amazon OpenSearch Service in CloudWatch Logs.

Decompress CloudWatch Logs

If you are using Firehose to deliver CloudWatch Logs and want to deliver decompressed data to
your Firehose stream destination, use Firehose Data Format Conversion (Parquet, ORC) or Dynamic
partitioning. You must enable decompression for your Firehose stream.

You can enable decompression using the AWS Management Console, AWS Command Line Interface
or AWS SDKs.

Send CloudWatch Logs to Firehose 84

https://docs.aws.amazon.com/firehose/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#FirehoseExample
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html
https://docs.aws.amazon.com/firehose/latest/dev/dynamic-partitioning.html

Amazon Data Firehose Developer Guide

Note

If you enable the decompression feature on a stream, use that stream exclusively for
CloudWatch Logs subscriptions filters, and not for Vended Logs. If you enable the
decompression feature on a stream that is used to ingest both CloudWatch Logs and
Vended Logs, the Vended Logs ingestion to Firehose fails. This decompression feature is
only for CloudWatch Logs.

Extract message after decompression of CloudWatch Logs

When you enable decompression, you have the option to also enable message extraction. When
using message extraction, Firehose filters out all metadata, such as owner, loggroup, logstream,
and others from the decompressed CloudWatch Logs records and delivers only the content inside
the message fields. If you are delivering data to a Splunk destination, you must turn on message
extraction for Splunk to parse the data. Following are sample outputs after decompression with
and without message extraction.

Fig 1: Sample output after decompression without message extraction:

{
 "owner": "111111111111",
 "logGroup": "CloudTrail/logs",
 "logStream": "111111111111_CloudTrail/logs_us-east-1",
 "subscriptionFilters": [
 "Destination"
],
 "messageType": "DATA_MESSAGE",
 "logEvents": [
 {
 "id": "31953106606966983378809025079804211143289615424298221568",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root1\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221569",
 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root2\"}"
 },
 {
 "id": "31953106606966983378809025079804211143289615424298221570",

Extract message after decompression of CloudWatch Logs 85

Amazon Data Firehose Developer Guide

 "timestamp": 1432826855000,
 "message": "{\"eventVersion\":\"1.03\",\"userIdentity\":{\"type\":\"Root3\"}"
 }
]
}

Fig 2: Sample output after decompression with message extraction:

{"eventVersion":"1.03","userIdentity":{"type":"Root1"}
{"eventVersion":"1.03","userIdentity":{"type":"Root2"}
{"eventVersion":"1.03","userIdentity":{"type":"Root3"}

Enable decompression on a new Firehose stream from console

To enable decompression on a new Firehose stream using the AWS Management Console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Amazon Data Firehose in the navigation pane.

3. Choose Create Firehose stream.

4. Under Choose source and destination

Source

The source of your Firehose stream. Choose one of the following sources:

• Direct PUT – Choose this option to create a Firehose stream that producer applications
write to directly. For a list of AWS services and agents and open source services that are
integrated with Direct PUT in Firehose, see this section.

• Kinesis stream: Choose this option to configure a Firehose stream that uses a Kinesis
data stream as a data source. You can then use Firehose to read data easily from an
existing Kinesis data stream and load it into destinations. For more information, see
Writing to Firehose Using Kinesis Data Streams

Destination

The destination of your Firehose stream. Choose one of the following:

• Amazon S3

• Splunk
Enable decompression on a new Firehose stream from console 86

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html

Amazon Data Firehose Developer Guide

5. Under Firehose stream name, enter a name for your stream.

6. (Optional) Under Transform records:

• In the Decompress source records from Amazon CloudWatch Logs section, choose Turn on
decompression.

• If you want to use message extraction after decompression, choose Turn on message
extraction.

Enable decompression on an existing Firehose stream

This section provides instructions for enabling decompression on existing Firehose streams.
It covers two scenarios – streams with Lambda processing disabled and streams with Lambda
processing already enabled. The following sections outline step-by-step procedures for each
case, including the creation or modification of Lambda functions, updating Firehose settings,
and monitoring CloudWatch metrics to ensure successful implementation of the built-in Firehose
decompression feature.

Enabling decompression when Lambda processing is disabled

To enable decompression on an existing Firehose stream with Lambda processing disabled, you
must first enable Lambda processing. This condition is only valid for existing streams. Following
steps show how to enable decompression on existing streams that do not have Lambda processing
enabled.

1. Create a Lambda function. You can either create a dummy record pass through or can use this
blueprint to create a new Lambda function.

2. Update your current Firehose stream to enable Lambda processing and use the Lambda function
that you created for processing.

3. Once you update the stream with new Lambda function, go back to Firehose console and enable
decompression.

4. Disable the Lambda processing that you enabled in step 1. You can now delete the function that
you created in step 1.

Enabling decompression when Lambda processing is enabled

If you already have a Firehose stream with a Lambda function, to perform decompression you
can replace it with the Firehose decompression feature. Before you proceed, review your Lambda

Enable decompression on an existing Firehose stream 87

https://github.com/aws-samples/aws-kinesis-firehose-resources/tree/main/blueprints/kinesis-firehose-cloudwatch-logs-processor

Amazon Data Firehose Developer Guide

function code to confirm that it only performs decompression or message extraction. The output
of your Lambda function should look similar to the examples shown in Fig 1 or Fig 2. If the output
looks similar, you can replace the Lambda function using the following steps.

1. Replace your current Lambda function with this blueprint. The new blueprint Lambda function
automatically detects whether the incoming data is compressed or decompressed. It only
performs decompression if its input data is compressed.

2. Turn on decompression using the built-in Firehose option for decompression.

3. Enable CloudWatch metrics for your Firehose stream if it's not already enabled. Monitor the
metric CloudWatchProcessorLambda_IncomingCompressedData and wait until this
metric changes to zero. This confirms that all input data sent to your Lambda function is
decompressed and the Lambda function is no longer required.

4. Remove the Lambda data transformation because you no longer need it to decompress your
stream.

Disable decompression on Firehose stream

To disable decompression on a data stream using the AWS Management Console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Amazon Data Firehose in the navigation pane.

3. Choose the Firehose stream you wish to edit.

4. On Firehose stream details page, choose the Configuration tab.

5. In the Transform and convert records section, choose Edit.

6. Under Decompress source records from Amazon CloudWatch Logs, clear Turn on
decompression and then choose Save changes.

Troubleshoot decompression in Firehose

The following table shows how Firehose handles errors during data decompression and processing,
including delivering records to an error S3 bucket, logging errors, and emitting metrics. It also
explains the error message returned for unauthorized data put operations.

Disable decompression on Firehose stream 88

https://github.com/aws-samples/aws-kinesis-firehose-resources/tree/main/blueprints/kinesis-firehose-cloudwatch-logs-processor
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Data Firehose Developer Guide

Issue Solution

What happens to the source data in
case of an error during decompres
sion?

If Amazon Data Firehose is not able to decompress
the record, the record is delivered as is (in compresse
d format) to error S3 bucket you specified during
Firehose stream creation time. Along with the record,
the delivered object also includes error code and error
message and these objects will be delivered to an S3
bucket prefix called decompression-failed .
Firehose will continue to process other records after a
failed decompression of a record.

What happens to the source data
in case of an error in the processing
pipeline after successful decompres
sion?

If Amazon Data Firehose errors out in the processing
steps after decompression like Dynamic Partitioning
and Data Format Conversion, the record is delivered in
compressed format to the error S3 bucket you specified
during Firehose stream creation time. Along with the
record, the delivered object also includes error code and
error message.

How are you informed in case of an
error or an exception?

In case of an error or an exception during decompres
sion, if you configure CloudWatch Logs, Firehose will
log error messages into CloudWatch Logs. Additionally,
Firehose sends metrics to CloudWatch metrics that you
can monitor. You can also optionally create alarms based
on metrics emitted by Firehose.

What happens when put operation
s don't come from CloudWatch
Logs?

When customer puts do not come from CloudWatch
Logs, then the following error message is returned:

Put to Firehose failed for AccountId: <accountI
D>, FirehoseName: <firehosename> because the
 request is not originating from allowed source
 types.

What metrics does Firehose emit for
the decompression feature?

Firehose emits metrics for decompression of every
record. You should select the period (1 min), statistic
(sum), date range to get the number of Decompres

Troubleshoot decompression in Firehose 89

Amazon Data Firehose Developer Guide

Issue Solution

sedRecords failed or succeeded or Decompres
sedBytes failed or succeeded. For more information,
see CloudWatch Logs Decompression Metrics.

Send CloudWatch Events to Firehose

You can configure Amazon CloudWatch to send events to a Firehose stream by adding a target to a
CloudWatch Events rule.

To create a target for a CloudWatch Events rule that sends events to an existing Firehose stream

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Create rule.

3. On the Step 1: Create rule page, for Targets, choose Add target, and then choose Firehose
stream.

4. Choose an existing Firehose stream.

For more information about creating CloudWatch Events rules, see Getting Started with Amazon
CloudWatch Events.

Configure AWS IoT to send data to Firehose

You can configure AWS IoT to send information to a Firehose stream by adding an action.

To create an action that sends events to an existing Firehose stream

1. When creating a rule in the AWS IoT console, on the Create a rule page, under Set one or
more actions, choose Add action.

2. Choose Send messages to an Amazon Kinesis Firehose stream.

3. Choose Configure action.

4. For Stream name, choose an existing Firehose stream.

5. For Separator, choose a separator character to be inserted between records.

Send CloudWatch Events to Firehose 90

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html

Amazon Data Firehose Developer Guide

6. For IAM role name, choose an existing IAM role or choose Create a new role.

7. Choose Add action.

For more information about creating AWS IoT rules, see AWS IoT Rule Tutorials.

Configure AWS IoT to send data to Firehose 91

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules-tutorial.html

Amazon Data Firehose Developer Guide

Transform source data in Amazon Data Firehose

Amazon Data Firehose can invoke your Lambda function to transform incoming source data
and deliver the transformed data to destinations. You can enable Amazon Data Firehose data
transformation when you create your Firehose stream.

Understand data transformation flow

When you enable Firehose data transformation, Firehose buffers incoming data. The buffering
size hint ranges between 0.2 MB and 3MB. The default Lambda buffering size hint is 1 MB for
all destinations, except Splunk and Snowflake. For Splunk and Snowflake, the default buffering
hint is 256 KB. The Lambda buffering interval hint ranges between 0 and 900 seconds. The
default Lambda buffering interval hint is sixty seconds for all destinations except Snowflake. For
Snowflake, the default buffering hint interval is 30 seconds. To adjust the buffering size, set the
ProcessingConfiguration parameter of the CreateDeliveryStream or UpdateDestination API with
the ProcessorParameter called BufferSizeInMBs and IntervalInSeconds. Firehose then
invokes the specified Lambda function synchronously with each buffered batch using the AWS
Lambda synchronous invocation mode. The transformed data is sent from Lambda to Firehose.
Firehose then sends it to the destination when the specified destination buffering size or buffering
interval is reached, whichever happens first.

Important

The Lambda synchronous invocation mode has a payload size limit of 6 MB for both the
request and the response. Make sure that your buffering size for sending the request to
the function is less than or equal to 6 MB. Also ensure that the response that your function
returns doesn't exceed 6 MB.

Lambda invocation duration

Amazon Data Firehose supports a Lambda invocation time of up to 5 minutes. If your Lambda
function takes more than 5 minutes to complete, you get the following error: Firehose encountered
timeout errors when calling AWS Lambda. The maximum supported function timeout is 5 minutes.

For information about what Amazon Data Firehose does if such an error occurs, see the section
called “Handle failure in data transformation ”.

Understand data transformation flow 92

https://docs.aws.amazon.com/firehose/latest/APIReference/API_ProcessingConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ProcessorParameter.html

Amazon Data Firehose Developer Guide

Required parameters for data transformation

All transformed records from Lambda must contain the following parameters, or Amazon Data
Firehose rejects them and treats that as a data transformation failure.

For Kinesis Data Streams and Direct PUT

The following parameters are required for all transformed records from Lambda.

• recordId – The record ID is passed from Amazon Data Firehose to Lambda during the
invocation. The transformed record must contain the same record ID. Any mismatch between
the ID of the original record and the ID of the transformed record is treated as a data
transformation failure.

• result – The status of the data transformation of the record. The possible values are: Ok
(the record was transformed successfully), Dropped (the record was dropped intentionally
by your processing logic), and ProcessingFailed (the record could not be transformed).
If a record has a status of Ok or Dropped, Amazon Data Firehose considers it successfully
processed. Otherwise, Amazon Data Firehose considers it unsuccessfully processed.

• data – The transformed data payload, after base64-encoding.

Following is a sample Lambda result output:

 {
 "recordId": "<recordId from the Lambda input>",
 "result": "Ok",
 "data": "<Base64 encoded Transformed data>"
}

For Amazon MSK

The following parameters are required for all transformed records from Lambda.

• recordId – The record ID is passed from Firehose to Lambda during the invocation. The
transformed record must contain the same record ID. Any mismatch between the ID of the
original record and the ID of the transformed record is treated as a data transformation
failure.

• result – The status of the data transformation of the record. The possible values are: Ok
(the record was transformed successfully), Dropped (the record was dropped intentionally by

Required parameters for data transformation 93

Amazon Data Firehose Developer Guide

your processing logic), and ProcessingFailed (the record could not be transformed). If a
record has a status of Ok or Dropped, Firehose considers it successfully processed. Otherwise,
Firehose considers it unsuccessfully processed.

• KafkaRecordValue – The transformed data payload, after base64-encoding.

Following is a sample Lambda result output:

 {
 "recordId": "<recordId from the Lambda input>",
 "result": "Ok",
 "kafkaRecordValue": "<Base64 encoded Transformed data>"
}

Supported Lambda blueprints

These blueprints demonstrate how you can create and use AWS Lambda functions to transform
data in your Amazon Data Firehose data streams.

To see the blueprints that are available in the AWS Lambda console

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function, and then choose Use a blueprint.

3. In the Blueprints field, search for the keyword firehose to find the Amazon Data Firehose
Lambda blueprints.

List of blueprints:

• Process records sent to Amazon Data Firehose stream (Node.js, Python)

This blueprint shows a basic example of how to process data in your Firehose data stream using
AWS Lambda.

Latest release date: November, 2016.

Release notes: none.

• Process CloudWatch Logs sent to Firehose

Supported Lambda blueprints 94

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Data Firehose Developer Guide

This blueprint is deprecated. Do not use this blueprint. It might incur high charges when the
decompressed CloudWatch Logs data is more than 6MB (Lambda limit). For information on
processing CloudWatch Logs sent to Firehose, see Writing to Firehose Using CloudWatch Logs.

• Convert Amazon Data Firehose stream records in syslog format to JSON (Node.js)

This blueprint shows how you can convert input records in RFC3164 Syslog format to JSON.

Latest release date: Nov, 2016.

Release notes: none.

To see the blueprints that are available in the AWS Serverless Application Repository

1. Go to AWS Serverless Application Repository.

2. Choose Browse all applications.

3. In the Applications field, search for the keyword firehose.

You can also create a Lambda function without using a blueprint. See Getting Started with AWS
Lambda.

Handle failure in data transformation

If your Lambda function invocation fails because of a network timeout or because you've reached
the Lambda invocation limit, Amazon Data Firehose retries the invocation three times by default.
If the invocation does not succeed, Amazon Data Firehose then skips that batch of records. The
skipped records are treated as unsuccessfully processed records. You can specify or override the
retry options using the CreateDeliveryStream or UpdateDestination API. For this type of failure,
you can log invocation errors to Amazon CloudWatch Logs. For more information, see Monitor
Amazon Data Firehose Using CloudWatch Logs.

If the status of the data transformation of a record is ProcessingFailed, Amazon Data Firehose
treats the record as unsuccessfully processed. For this type of failure, you can emit error logs
to Amazon CloudWatch Logs from your Lambda function. For more information, see Accessing
Amazon CloudWatch Logs for AWS Lambda in the AWS Lambda Developer Guide.

If a data transformation fails, the unsuccessfully processed records are delivered to your S3 bucket
in the processing-failed folder. The records have the following format:

Handle failure in data transformation 95

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html
https://aws.amazon.com/serverless/serverlessrepo
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html

Amazon Data Firehose Developer Guide

{
 "attemptsMade": "count",
 "arrivalTimestamp": "timestamp",
 "errorCode": "code",
 "errorMessage": "message",
 "attemptEndingTimestamp": "timestamp",
 "rawData": "data",
 "lambdaArn": "arn"
}

attemptsMade

The number of invocation requests attempted.

arrivalTimestamp

The time that the record was received by Amazon Data Firehose.

errorCode

The HTTP error code returned by Lambda.

errorMessage

The error message returned by Lambda.

attemptEndingTimestamp

The time that Amazon Data Firehose stopped attempting Lambda invocations.

rawData

The base64-encoded record data.

lambdaArn

The Amazon Resource Name (ARN) of the Lambda function.

Back up source records

Amazon Data Firehose can back up all untransformed records to your S3 bucket concurrently while
delivering transformed records to the destination. You can enable source record backup when you
create or update your Firehose stream. You cannot disable source record backup after you enable it.

Back up source records 96

Amazon Data Firehose Developer Guide

Partition streaming data in Amazon Data Firehose

Dynamic partitioning enables you to continuously partition streaming data in Firehose by using
keys within data (for example, customer_id or transaction_id) and then deliver the data
grouped by these keys into corresponding Amazon Simple Storage Service (Amazon S3) prefixes.
This makes it easier to run high performance, cost-efficient analytics on streaming data in Amazon
S3 using various services such as Amazon Athena, Amazon EMR, Amazon Redshift Spectrum, and
Amazon QuickSight. In addition, AWS Glue can perform more sophisticated extract, transform, and
load (ETL) jobs after the dynamically partitioned streaming data is delivered to Amazon S3, in use-
cases where additional processing is required.

Partitioning your data minimizes the amount of data scanned, optimizes performance, and reduces
costs of your analytics queries on Amazon S3. It also increases granular access to your data.
Firehose streams are traditionally used in order to capture and load data into Amazon S3. To
partition a streaming data set for Amazon S3-based analytics, you would need to run partitioning
applications between Amazon S3 buckets prior to making the data available for analysis, which
could become complicated or costly.

With dynamic partitioning, Firehose continuously groups in-transit data using dynamically or
statically defined data keys, and delivers the data to individual Amazon S3 prefixes by key. This
reduces time-to-insight by minutes or hours. It also reduces costs and simplifies architectures.

Topics

• Enable dynamic partitioning in Amazon Data Firehose

• Understand partitioning keys

• Use Amazon S3 bucket prefix to deliver data

• Apply dynamic partitioning to aggregated data

• Troubleshoot dynamic partitioning errors

• Buffer data for dynamic partitioning

Enable dynamic partitioning in Amazon Data Firehose

You can configure dynamic partitioning for your Firehose streams through the Amazon Data
Firehose Management Console, CLI, or the APIs.

Enable dynamic partitioning 97

Amazon Data Firehose Developer Guide

Important

You can enable dynamic partitioning only when you create a new Firehose stream. You
cannot enable dynamic partitioning for an existing Firehose stream that does not have
dynamic partitioning already enabled.

For detailed steps on how to enable and configure dynamic partitioning through the Firehose
management console while creating a new Firehose stream, see Creating an Amazon Firehose
stream. When you get to the task of specifying the destination for your Firehose stream, make
sure to follow the steps in the Configure destination settings section, since currently, dynamic
partitioning is only supported for Firehose streams that use Amazon S3 as the destination.

Once dynamic partitioning on an active Firehose stream is enabled, you can update the
configuration by adding new or removing or updating existing partitioning keys and the S3 prefix
expressions. Once updated, Firehose starts using the new keys and the new S3 prefix expressions.

Important

Once you enable dynamic partitioning on a Firehose stream, it cannot be disabled on this
Firehose stream.

Understand partitioning keys

With dynamic partitioning, you create targeted data sets from the streaming S3 data by
partitioning the data based on partitioning keys. Partitioning keys enable you to filter your
streaming data based on specific values. For example, if you need to filter your data based on
customer ID and country, you can specify the data field of customer_id as one partitioning key
and the data field of country as another partitioning key. Then, you specify the expressions (using
the supported formats) to define the S3 bucket prefixes to which the dynamically partitioned data
records are to be delivered.

You can create partitioning keys with the following methods.

• Inline parsing – this method uses Firehose built-in support mechanism, a jq parser, for
extracting the keys for partitioning from data records that are in JSON format. Currently, we only
support jq 1.6 version.

Understand partitioning keys 98

https://stedolan.github.io/jq/

Amazon Data Firehose Developer Guide

• AWS Lambda function – this method uses a specified AWS Lambda function to extract and
return the data fields needed for partitioning.

Important

When you enable dynamic partitioning, you must configure at least one of these methods
to partition your data. You can configure either of these methods to specify your
partitioning keys or both of them at the same time.

Create partitioning keys with inline parsing

To configure inline parsing as the dynamic partitioning method for your streaming data, you
must choose data record parameters to be used as partitioning keys and provide a value for each
specified partitioning key.

The following sample data record shows how you can define partitioning keys for it with inline
parsing. Note that the data should be encoded in Base64 format. You can also refer to the CLI
example.

{
 "type": {
 "device": "mobile",
 "event": "user_clicked_submit_button"
 },
 "customer_id": "1234567890",
 "event_timestamp": 1565382027, #epoch timestamp
 "region": "sample_region"
}

For example, you can choose to partition your data based on the customer_id parameter or
the event_timestamp parameter. This means that you want the value of the customer_id
parameter or the event_timestamp parameter in each record to be used in determining the S3
prefix to which the record is to be delivered. You can also choose a nested parameter, like device
with an expression .type.device. Your dynamic partitioning logic can depend on multiple
parameters.

After selecting data parameters for your partitioning keys, you then map each parameter to a valid
jq expression. The following table shows such a mapping of parameters to jq expressions:

Create partitioning keys with inline parsing 99

https://docs.aws.amazon.com/cli/latest/reference/firehose/put-record.html#examples
https://docs.aws.amazon.com/cli/latest/reference/firehose/put-record.html#examples

Amazon Data Firehose Developer Guide

Parameter jq expression

customer_id .customer_id

device .type.device

year .event_timestamp| strftime("%Y")

month .event_timestamp| strftime("%m")

day .event_timestamp| strftime("%d")

hour .event_timestamp| strftime("%H")

At runtime, Firehose uses the right column above to evaluate the parameters based on the data in
each record.

Create partitioning keys with an AWS Lambda function

For compressed or encrypted data records, or data that is in any file format other than JSON, you
can use the integrated AWS Lambda function with your own custom code to decompress, decrypt,
or transform the records in order to extract and return the data fields needed for partitioning. This
is an expansion of the existing transform Lambda function that is available today with Firehose.
You can transform, parse and return the data fields that you can then use for dynamic partitioning
using the same Lambda function.

The following is an example Firehose stream processing Lambda function in Python that replays
every read record from input to output and extracts partitioning keys from the records.

from __future__ import print_function
import base64
import json
import datetime

Signature for all Lambda functions that user must implement
def lambda_handler(firehose_records_input, context):
 print("Received records for processing from DeliveryStream: " +
 firehose_records_input['deliveryStreamArn']
 + ", Region: " + firehose_records_input['region']

Create partitioning keys with an AWS Lambda function 100

Amazon Data Firehose Developer Guide

 + ", and InvocationId: " + firehose_records_input['invocationId'])

 # Create return value.
 firehose_records_output = {'records': []}

 # Create result object.
 # Go through records and process them

 for firehose_record_input in firehose_records_input['records']:
 # Get user payload
 payload = base64.b64decode(firehose_record_input['data'])
 json_value = json.loads(payload)

 print("Record that was received")
 print(json_value)
 print("\n")
 # Create output Firehose record and add modified payload and record ID to it.
 firehose_record_output = {}
 event_timestamp = datetime.datetime.fromtimestamp(json_value['eventTimestamp'])
 partition_keys = {"customerId": json_value['customerId'],
 "year": event_timestamp.strftime('%Y'),
 "month": event_timestamp.strftime('%m'),
 "day": event_timestamp.strftime('%d'),
 "hour": event_timestamp.strftime('%H'),
 "minute": event_timestamp.strftime('%M')
 }

 # Create output Firehose record and add modified payload and record ID to it.
 firehose_record_output = {'recordId': firehose_record_input['recordId'],
 'data': firehose_record_input['data'],
 'result': 'Ok',
 'metadata': { 'partitionKeys': partition_keys }}

 # Must set proper record ID
 # Add the record to the list of output records.

 firehose_records_output['records'].append(firehose_record_output)

 # At the end return processed records
 return firehose_records_output

The following is an example Firehose stream processing Lambda function in Go that replays every
read record from input to output and extracts partitioning keys from the records.

Create partitioning keys with an AWS Lambda function 101

Amazon Data Firehose Developer Guide

package main

import (
 "fmt"
 "encoding/json"
 "time"
 "strconv"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

type DataFirehoseEventRecordData struct {
 CustomerId string `json:"customerId"`
}

func handleRequest(evnt events.DataFirehoseEvent) (events.DataFirehoseResponse, error)
 {

 fmt.Printf("InvocationID: %s\n", evnt.InvocationID)
 fmt.Printf("DeliveryStreamArn: %s\n", evnt.DeliveryStreamArn)
 fmt.Printf("Region: %s\n", evnt.Region)

 var response events.DataFirehoseResponse

 for _, record := range evnt.Records {
 fmt.Printf("RecordID: %s\n", record.RecordID)
 fmt.Printf("ApproximateArrivalTimestamp: %s\n", record.ApproximateArrivalTimestamp)

 var transformedRecord events.DataFirehoseResponseRecord
 transformedRecord.RecordID = record.RecordID
 transformedRecord.Result = events.DataFirehoseTransformedStateOk
 transformedRecord.Data = record.Data

 var metaData events.DataFirehoseResponseRecordMetadata
 var recordData DataFirehoseEventRecordData
 partitionKeys := make(map[string]string)

 currentTime := time.Now()
 json.Unmarshal(record.Data, &recordData)
 partitionKeys["customerId"] = recordData.CustomerId
 partitionKeys["year"] = strconv.Itoa(currentTime.Year())

Create partitioning keys with an AWS Lambda function 102

Amazon Data Firehose Developer Guide

 partitionKeys["month"] = strconv.Itoa(int(currentTime.Month()))
 partitionKeys["date"] = strconv.Itoa(currentTime.Day())
 partitionKeys["hour"] = strconv.Itoa(currentTime.Hour())
 partitionKeys["minute"] = strconv.Itoa(currentTime.Minute())
 metaData.PartitionKeys = partitionKeys
 transformedRecord.Metadata = metaData

 response.Records = append(response.Records, transformedRecord)
 }

 return response, nil
}

func main() {
 lambda.Start(handleRequest)
}

Use Amazon S3 bucket prefix to deliver data

When you create a Firehose stream that uses Amazon S3 as the destination, you must specify an
Amazon S3 bucket where Firehose is to deliver your data. Amazon S3 bucket prefixes are used to
organize the data that you store in your S3 buckets. An Amazon S3 bucket prefix is similar to a
directory that enables you to group similar objects together.

With dynamic partitioning, your partitioned data is delivered into the specified Amazon S3 prefixes.
If you don't enable dynamic partitioning, specifying an S3 bucket prefix for your Firehose stream
is optional. However, if you choose to enable dynamic partitioning, you must specify the S3 bucket
prefixes to which Firehose delivers partitioned data.

In every Firehose stream where you enable dynamic partitioning, the S3 bucket prefix value
consists of expressions based on the specified partitioning keys for that Firehose stream. Using
the above data record example again, you can build the following S3 prefix value that consists of
expressions based on the partitioning keys defined above:

"ExtendedS3DestinationConfiguration": {
"BucketARN": "arn:aws:s3:::my-logs-prod",
"Prefix": "customer_id=!{partitionKeyFromQuery:customer_id}/
 device=!{partitionKeyFromQuery:device}/
 year=!{partitionKeyFromQuery:year}/

Use Amazon S3 bucket prefix to deliver data 103

Amazon Data Firehose Developer Guide

 month=!{partitionKeyFromQuery:month}/
 day=!{partitionKeyFromQuery:day}/
 hour=!{partitionKeyFromQuery:hour}/"
}

Firehose evaluates the above expression at runtime. It groups records that match the same
evaluated S3 prefix expression into a single data set. Firehose then delivers each data set to the
evaluated S3 prefix. The frequency of data set delivery to S3 is determined by the Firehose stream
buffer setting. As a result, the record in this example is delivered to the following S3 object key:

s3://my-logs-prod/customer_id=1234567890/device=mobile/year=2019/month=08/day=09/
hour=20/my-delivery-stream-2019-08-09-23-55-09-a9fa96af-e4e4-409f-bac3-1f804714faaa

For dynamic partitioning, you must use the following expression format in your S3 bucket
prefix: !{namespace:value}, where namespace can be either partitionKeyFromQuery or
partitionKeyFromLambda, or both. If you are using inline parsing to create the partitioning
keys for your source data, you must specify an S3 bucket prefix value that consists of expressions
specified in the following format: "partitionKeyFromQuery:keyID". If you are using
an AWS Lambda function to create partitioning keys for your source data, you must specify
an S3 bucket prefix value that consists of expressions specified in the following format:
"partitionKeyFromLambda:keyID".

Note

You can also specify the S3 bucket prefix value using the hive style format, for example
customer_id=!{partitionKeyFromQuery:customer_id}.

For more information, see the "Choose Amazon S3 for Your Destination" in Creating an Amazon
Firehose stream and Custom Prefixes for Amazon S3 Objects.

Add a new line delimiter when delivering data to Amazon S3

You can enable New Line Delimiter to add a new line delimiter between records in objects that
are delivered to Amazon S3. This can be helpful for parsing objects in Amazon S3. This is also

Add a new line delimiter when delivering data to Amazon S3 104

Amazon Data Firehose Developer Guide

particularly useful when dynamic partitioning is applied to aggregated data because multi-
record deaggregation (which must be applied to aggregated data before it can be dynamically
partitioned) removes new lines from records as part of the parsing process.

Apply dynamic partitioning to aggregated data

You can apply dynamic partitioning to aggregated data (for example, multiple events, logs, or
records aggregated into a single PutRecord and PutRecordBatch API call) but this data must
first be deaggregated. You can deaggregate your data by enabling multi record deaggregation -
the process of parsing through the records in the Firehose stream and separating them.

Multi record deaggregation can either be of JSON type, meaning that the separation of records is
based on consecutive JSON objects. Deaggregation can also be of the type Delimited, meaning
that the separation of records is performed based on a specified custom delimiter. This custom
delimiter must be a base-64 encoded string. For example, if you want to use the following string as
your custom delimiter ####, you must specify it in the base-64 encoded format, which translates it
to IyMjIw==. Record deaggregation by JSON or by delimiter is capped at 500 per record.

Note

When deaggregating JSON records, make sure that your input is still presented in the
supported JSON format. JSON objects must be on a single line with no delimiter or
newline-delimited (JSONL) only. An array of JSON objects is not a valid input.
These are examples of correct input: {"a":1}{"a":2} and {"a":1}\n{"a":2}
This is an example of the incorrect input: [{"a":1}, {"a":2}]

With aggregated data, when you enable dynamic partitioning, Firehose parses the records and
looks for either valid JSON objects or delimited records within each API call based on the specified
multi record deaggregation type.

Important

If your data is aggregated, dynamic partitioning can be only be applied if your data is first
deaggregated.

Apply dynamic partitioning to aggregated data 105

Amazon Data Firehose Developer Guide

Important

When you use Data Transformation feature in Firehose, the deaggregation will be applied
before the Data Transformation. Data coming into Firehose will be processed in the
following order: Deaggregation → Data Transformation via Lambda → Partitioning Keys.

Troubleshoot dynamic partitioning errors

If Amazon Data Firehose is not able to parse data records in your Firehose stream or it fails to
extract the specified partitioning keys, or to evaluate the expressions included in the S3 prefix
value, these data records are delivered to the S3 error bucket prefix that you must specify when
you create the Firehose stream where you enable dynamic partitioning. The S3 error bucket prefix
contains all the records that Firehose is not able to deliver to the specified S3 destination. These
records are organized based on the error type. Along with the record, the delivered object also
includes information about the error to help understand and resolve the error.

You must specify an S3 error bucket prefix for a Firehose stream if you want to enable dynamic
partitioning for this Firehose stream. If you don't want to enable dynamic partitioning for a
Firehose stream, specifying an S3 error bucket prefix is optional.

Buffer data for dynamic partitioning

Amazon Data Firehose buffers incoming streaming data to a certain size and for a certain period
of time before delivering it to the specified destinations. You can configure the buffer size and
the buffer interval while creating new Firehose streams or update the buffer size and the buffer
interval on your existing Firehose streams. A buffer size is measured in MBs and a buffer interval is
measured in seconds.

Note

Zero buffering feature is not available for dynamic partitioning.

When dynamic partitioning is enabled, Firehose internally buffers records that belong to a given
partition based on the configured buffering hint (size and time) before delivering these records
to your Amazon S3 bucket. In order to deliver maximum size objects, Firehose uses multi-stage

Troubleshoot dynamic partitioning errors 106

Amazon Data Firehose Developer Guide

buffering internally. Therefore, end-to-end delay of a batch of records might be 1.5 times of the
configured buffering hint time. This affects the data freshness of a Firehose stream.

The active partition count is the total number of active partitions within the delivery buffer.
For example, if the dynamic partitioning query constructs 3 partitions per second and you have
a buffer hint configuration triggering delivery every 60 seconds, then on average you would
have 180 active partitions. If Firehose cannot deliver the data in a partition to a destination, this
partition is counted as active in the delivery buffer until it can be delivered.

A new partition is created when an S3 prefix is evaluated to a new value based on the record
data fields and the S3 prefix expressions. A new buffer is created for each active partition. Every
subsequent record with the same evaluated S3 prefix is delivered to that buffer.

Once the buffer meets the buffer size limit or the buffer time interval, Firehose creates an object
with the buffer data and delivers it to the specified Amazon S3 prefix. After the object is delivered,
the buffer for that partition and the partition itself are deleted and removed from the active
partitions count.

Firehose delivers each buffer data as a single object once the buffer size or interval are met for
each partition separately. Once the number of active partitions reaches a limit of 500 per Firehose
stream, the rest of the records in the Firehose stream are delivered to the specified S3 error bucket
prefix (activePartitionExceeded). You can use the Amazon Data Firehose Limits form to request
an increase of this quota up to 5000 active partitions per given Firehose stream. If you need more
partitions, you can create more Firehose streams and distribute the active partitions across them.

Buffer data for dynamic partitioning 107

https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits

Amazon Data Firehose Developer Guide

Convert input data format in Amazon Data Firehose

Amazon Data Firehose can convert the format of your input data from JSON to Apache Parquet or
Apache ORC before storing the data in Amazon S3. Parquet and ORC are columnar data formats
that save space and enable faster queries compared to row-oriented formats like JSON. If you want
to convert an input format other than JSON, such as comma-separated values (CSV) or structured
text, you can use AWS Lambda to transform it to JSON first. For more information, see Transform
source data.

You can convert the format of your data even if you aggregate your records before sending them
to Amazon Data Firehose.

Amazon Data Firehose requires the following three elements to convert the format of your record
data:

Deserializer

Amazon Data Firehose requires a deserializer to read the JSON of your input data. You can choose
one of the following two types of deserializer.

When combining multiple JSON documents into the same record, make sure that your input is still
presented in the supported JSON format. An array of JSON documents is not a valid input.

For example, this is the correct input: {"a":1}{"a":2}

And this is the incorrect input: [{"a":1}, {"a":2}]

• Apache Hive JSON SerDe

• OpenX JSON SerDe

Choose the JSON deserializer

Choose the OpenX JSON SerDe if your input JSON contains time stamps in the following formats:

• yyyy-MM-dd'T'HH:mm:ss[.S]'Z', where the fraction can have up to 9 digits – For example,
2017-02-07T15:13:01.39256Z.

• yyyy-[M]M-[d]d HH:mm:ss[.S], where the fraction can have up to 9 digits – For example,
2017-02-07 15:13:01.14.

Deserializer 108

https://parquet.apache.org/
https://orc.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://github.com/rcongiu/Hive-JSON-Serde
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Data Firehose Developer Guide

• Epoch seconds – For example, 1518033528.

• Epoch milliseconds – For example, 1518033528123.

• Floating point epoch seconds – For example, 1518033528.123.

The OpenX JSON SerDe can convert periods (.) to underscores (_). It can also convert JSON keys
to lowercase before deserializing them. For more information about the options that are available
with this deserializer through Amazon Data Firehose, see OpenXJsonSerDe.

If you're not sure which deserializer to choose, use the OpenX JSON SerDe, unless you have time
stamps that it doesn't support.

If you have time stamps in formats other than those listed previously, use the Apache Hive JSON
SerDe. When you choose this deserializer, you can specify the time stamp formats to use. To do
this, follow the pattern syntax of the Joda-Time DateTimeFormat format strings. For more
information, see Class DateTimeFormat.

You can also use the special value millis to parse time stamps in epoch milliseconds. If you don't
specify a format, Amazon Data Firehose uses java.sql.Timestamp::valueOf by default.

The Hive JSON SerDe doesn't allow the following:

• Periods (.) in column names.

• Fields whose type is uniontype.

• Fields that have numerical types in the schema, but that are strings in the JSON. For example, if
the schema is (an int), and the JSON is {"a":"123"}, the Hive SerDe gives an error.

The Hive SerDe doesn't convert nested JSON into strings. For example, if you have {"a":
{"inner":1}}, it doesn't treat {"inner":1} as a string.

Schema

Amazon Data Firehose requires a schema to determine how to interpret that data. Use AWS Glue to
create a schema in the AWS Glue Data Catalog. Amazon Data Firehose then references that schema
and uses it to interpret your input data. You can use the same schema to configure both Amazon
Data Firehose and your analytics software. For more information, see Populating the AWS Glue
Data Catalog in the AWS Glue Developer Guide.

Schema 109

https://docs.aws.amazon.com/firehose/latest/APIReference/API_OpenXJsonSerDe.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html

Amazon Data Firehose Developer Guide

Note

The schema created in AWS Glue Data Catalog should match the input data structure.
Otherwise, the converted data will not contain attributes that are not specified in the
schema. If you use nested JSON, use a STRUCT type in the schema that mirrors the
structure of your JSON data. See this example for how to handle nested JSON with a
STRUCT type.

Important

For data types that do not specify a size limit, there is a practical limit of 32 MBs for all of
the data in a single row.
If you specify length for CHAR or VARCHAR, Firehose truncates the strings at the specified
length when it reads the input data. If the underlying data string is longer, it remains
unchanged.

Serializer

Firehose requires a serializer to convert the data to the target columnar storage format
(Parquet or ORC) – You can choose one of the following two types of serializers.

• ORC SerDe

• Parquet SerDe

Choose the serializer

The serializer that you choose depends on your business needs. To learn more about the two
serializer options, see ORC SerDe and Parquet SerDe.

Enable record format conversion

If you enable record format conversion, you can't set your Amazon Data Firehose destination to
be Amazon OpenSearch Service, Amazon Redshift, or Splunk. With format conversion enabled,
Amazon S3 is the only destination that you can use for your Firehose stream. The following

Serializer 110

https://docs.aws.amazon.com/athena/latest/ug/openx-json-serde.html#nested-json-serde-example
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet

Amazon Data Firehose Developer Guide

section shows how to enable record format conversion from console and Firehose API operations.
For an example of how to set up record format conversion with AWS CloudFormation, see
AWS::DataFirehose::DeliveryStream.

Enable record format conversion from console

You can enable data format conversion on the console when you create or update a Firehose
stream. With data format conversion enabled, Amazon S3 is the only destination that you
can configure for the Firehose stream. Also, Amazon S3 compression gets disabled when you
enable format conversion. However, Snappy compression happens automatically as part of the
conversion process. The framing format for Snappy that Amazon Data Firehose uses in this case
is compatible with Hadoop. This means that you can use the results of the Snappy compression
and run queries on this data in Athena. For the Snappy framing format that Hadoop relies on, see
BlockCompressorStream.java.

To enable data format conversion for a data Firehose stream

1. Sign in to the AWS Management Console, and open the Amazon Data Firehose console at
https://console.aws.amazon.com/firehose/.

2. Choose a Firehose stream to update, or create a new Firehose stream by following the steps in
Tutorial: Create a Firehose stream from console.

3. Under Convert record format, set Record format conversion to Enabled.

4. Choose the output format that you want. For more information about the two options, see
Apache Parquet and Apache ORC.

5. Choose an AWS Glue table to specify a schema for your source records. Set the Region,
database, table, and table version.

Manage record format conversion from Firehose API

If you want Amazon Data Firehose to convert the format of your input data from JSON
to Parquet or ORC, specify the optional DataFormatConversionConfiguration element in
ExtendedS3DestinationConfiguration or in ExtendedS3DestinationUpdate. If you specify
DataFormatConversionConfiguration, the following restrictions apply.

• In BufferingHints, you can't set SizeInMBs to a value less than 64 if you enable record format
conversion. Also, when format conversion isn't enabled, the default value is 5. The value
becomes 128 when you enable it.

Enable record format conversion from console 111

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisfirehose-deliverystream.html#aws-resource-kinesisfirehose-deliverystream--examples
https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/compress/BlockCompressorStream.java
https://console.aws.amazon.com/firehose/
https://parquet.apache.org/
https://orc.apache.org/
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DataFormatConversionConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationUpdate.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DataFormatConversionConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_BufferingHints.html

Amazon Data Firehose Developer Guide

• You must set CompressionFormat in ExtendedS3DestinationConfiguration
or in ExtendedS3DestinationUpdate to UNCOMPRESSED. The default value for
CompressionFormat is UNCOMPRESSED. Therefore, you can also leave it unspecified in
ExtendedS3DestinationConfiguration. The data still gets compressed as part of the serialization
process, using Snappy compression by default. The framing format for Snappy that Amazon Data
Firehose uses in this case is compatible with Hadoop. This means that you can use the results of
the Snappy compression and run queries on this data in Athena. For the Snappy framing format
that Hadoop relies on, see BlockCompressorStream.java. When you configure the serializer, you
can choose other types of compression.

Handling errors for data format conversion

When Amazon Data Firehose can't parse or deserialize a record (for example, when the data doesn't
match the schema), it writes it to Amazon S3 with an error prefix. If this write fails, Amazon Data
Firehose retries it forever, blocking further delivery. For each failed record, Amazon Data Firehose
writes a JSON document with the following schema:

{
 "attemptsMade": long,
 "arrivalTimestamp": long,
 "lastErrorCode": string,
 "lastErrorMessage": string,
 "attemptEndingTimestamp": long,
 "rawData": string,
 "sequenceNumber": string,
 "subSequenceNumber": long,
 "dataCatalogTable": {
 "catalogId": string,
 "databaseName": string,
 "tableName": string,
 "region": string,
 "versionId": string,
 "catalogArn": string
 }
}

Handling errors for data format conversion 112

https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationUpdate.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/compress/BlockCompressorStream.java

Amazon Data Firehose Developer Guide

Understand data delivery in Amazon Data Firehose

When you send data to your Firehose stream, it's automatically delivered to your chosen
destination. The following table explains data delivery to different destinations.

Destination Details

Amazon S3 For data delivery to Amazon S3, Firehose concatenates multiple
incoming records based on the buffering configuration of your
Firehose stream. It then delivers the records to Amazon S3 as an
Amazon S3 object. By default, Firehose concatenates data without
any delimiters. If you want to have new line delimiters between
records, you can add new line delimiters by enabling the feature in
the Firehose console configuration or API parameter. Data delivery
between Firehose and Amazon S3 destination is encrypted with TLS
(HTTPS).

Amazon Redshift For data delivery to Amazon Redshift, Firehose first delivers
incoming data to your S3 bucket in the format described earlier.
Firehose then issues an Amazon Redshift COPY command to load
the data from your S3 bucket to your Amazon Redshift provisioned
cluster or Amazon Redshift Serverless workgroup. Ensure that after
Amazon Data Firehose concatenates multiple incoming records to
an Amazon S3 object, the Amazon S3 object can be copied to your
Amazon Redshift provisioned cluster or Amazon Redshift Serverles
s workgroup. For more information, see Amazon Redshift COPY
Command Data Format Parameters.

OpenSearch Service and
OpenSearch Serverless

For data delivery to OpenSearch Service and OpenSearch Serverles
s, Amazon Data Firehose buffers incoming records based on the
buffering configuration of your Firehose stream. It then generates
an OpenSearch Service or OpenSearch Serverless bulk request
to index multiple records to your OpenSearch Service cluster or
OpenSearch Serverless collection. Make sure that your record
is UTF-8 encoded and flattened to a single-line JSON object
before you send it to Amazon Data Firehose. Also, the rest.acti
on.multi.allow_explicit_index option for your

113

https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-s3
https://docs.aws.amazon.com/firehose/latest/APIReference/API_Processor.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.html

Amazon Data Firehose Developer Guide

Destination Details

OpenSearch Service cluster must be set to true (default) to take
bulk requests with an explicit index that is set per record. For more
information, see OpenSearch Service Configure Advanced Options
in the Amazon OpenSearch Service Developer Guide.

Splunk For data delivery to Splunk, Amazon Data Firehose concatenates
the bytes that you send. If you want delimiters in your data, such
as a new line character, you must insert them yourself. Make sure
that Splunk is configured to parse any such delimiters. To redrive
the data that was delivered to S3 error bucket (S3 backup) back to
Splunk, follow the steps mentioned in the Splunk documentation.

HTTP endpoint For data delivery to an HTTP endpoint owned by a supported third-
party service provider, you can use the integrated Amazon Lambda
service to create a function to transform the incoming record(s) to
the format that matches the format the service provider's integrati
on is expecting. Contact the third-party service provider whose
HTTP endpoint you've chosen for your destination to learn more
about their accepted record format.

Snowflake For data delivery to Snowflake, Amazon Data Firehose internall
y buffers data for one second and uses Snowflake streaming API
operations to insert data to Snowflake. By default, records that
you insert are flushed and committed to the Snowflake table every
second. After you make the insert call, Firehose emits a CloudWatch
metric that measures how long it took for the data to be committed
to Snowflake. Firehose currently supports only single JSON item
as record payload and doesn’t support JSON arrays. Make sure
that your input payload is a valid JSON object and is well formed
without any extra double quotes, quotes, or escape characters.

Each Firehose destination has its own data delivery frequency. For more information, see Configure
buffering hints.

Duplicate records

114

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomain-configure-advanced-options
https://www.splunk.com/en_us/blog/tips-and-tricks/aws-technical-add-on-simplifying-error-data-re-ingestion.html

Amazon Data Firehose Developer Guide

Amazon Data Firehose uses at-least-once semantics for data delivery. In some circumstances,
such as when data delivery times out, delivery retries by Amazon Data Firehose might introduce
duplicates if the original data-delivery request eventually goes through. This applies to all
destination types that Amazon Data Firehose supports, except for Amazon S3 destinations, Apache
Iceberg Tables, and Snowflake destinations.

Topics

• Understand delivery across AWS accounts and regions

• Understand HTTP endpoint delivery request and response specifications

• Handle data delivery failures

• Configure Amazon S3 object name format

• Configure index rotation for OpenSearch Service

• Pause and resume data delivery

Understand delivery across AWS accounts and regions

Amazon Data Firehose supports data delivery to HTTP endpoint destinations across AWS accounts.
The Firehose stream and the HTTP endpoint that you choose as your destination can belong to
different AWS accounts.

Amazon Data Firehose also supports data delivery to HTTP endpoint destinations across AWS
regions. You can deliver data from a Firehose stream in one AWS region to an HTTP endpoint
in another AWS region. You can also delivery data from a Firehose stream to an HTTP endpoint
destination outside of AWS regions, for example to your own on-premises server by setting the
HTTP endpoint URL to your desired destination. For these scenarios, additional data transfer
charges are added to your delivery costs. For more information, see the Data Transfer section in the
"On-Demand Pricing" page.

Understand HTTP endpoint delivery request and response
specifications

For Amazon Data Firehose to successfully deliver data to custom HTTP endpoints, these endpoints
must accept requests and send responses using certain Amazon Data Firehose request and
response formats. This section describes the format specifications of the HTTP requests that
the Amazon Data Firehose service sends to custom HTTP endpoints, as well as the format

Understand delivery across AWS accounts and regions 115

https://aws.amazon.com/ec2/pricing/on-demand/#Data_Transfer

Amazon Data Firehose Developer Guide

specifications of the HTTP responses that the Amazon Data Firehose service expects. HTTP
endpoints have 3 minutes to respond to a request before Amazon Data Firehose times out that
request. Amazon Data Firehose treats responses that do not adhere to the proper format as
delivery failures.

Request format

Path and URL Parameters

These are configured directly by you as part of a single URL field. Amazon Data Firehose
sends them as configured without modification. Only https destinations are supported. URL
restrictions are applied during delivery-stream configuration.

Note

Currently, only port 443 is supported for HTTP endpoint data delivery.

HTTP Headers - X-Amz-Firehose-Protocol-Version

This header is used to indicate the version of the request/response formats. Currently the only
version is 1.0.

HTTP Headers - X-Amz-Firehose-Request-Id

The value of this header is an opaque GUID that can be used for debugging and deduplication
purposes. Endpoint implementations should log the value of this header if possible, for both
successful and unsuccessful requests. The request ID is kept the same between multiple
attempts of the same request.

HTTP Headers - Content-Type

The value of the Content-Type header is always application/json.

HTTP Headers - Content-Encoding

A Firehose stream can be configured to use GZIP to compress the body when sending requests.
When this compression is enabled, the value of the Content-Encoding header is set to gzip, as
per standard practice. If compression is not enabled, the Content-Encoding header is absent
altogether.

HTTP Headers - Content-Length

This is used in the standard way.

Request format 116

Amazon Data Firehose Developer Guide

HTTP Headers - X-Amz-Firehose-Source-Arn:

The ARN of the Firehose stream represented in ASCII string format. The ARN encodes
region, AWS account ID and the stream name. For example, arn:aws:firehose:us-
east-1:123456789:deliverystream/testStream.

HTTP Headers - X-Amz-Firehose-Access-Key

This header carries an API key or other credentials. You have the ability to create or update the
API-key (aka authorization token) when creating or updating your delivery-stream. Amazon
Data Firehose restricts the size of the access key to 4096 bytes. Amazon Data Firehose does not
attempt to interpret this key in any way. The configured key is copied verbatim into the value of
this header.

The contents can be arbitrary and can potentially represent a JWT token or an ACCESS_KEY. If
an endpoint requires multi-field credentials (for example, username and password), the values
of all of the fields should be stored together within a single access-key in a format that the
endpoint understands (JSON or CSV). This field can be base-64 encoded if the original contents
are binary. Amazon Data Firehose does not modify and/or encode the configured value and
uses the contents as is.

HTTP Headers - X-Amz-Firehose-Common-Attributes

This header carries the common attributes (metadata) that pertain to the entire request, and/or
to all records within the request. These are configured directly by you when creating a Firehose
stream. The value of this attribute is encoded as a JSON object with the following schema:

"$schema": http://json-schema.org/draft-07/schema#

properties:
 commonAttributes:
 type: object
 minProperties: 0
 maxProperties: 50
 patternProperties:
 "^.{1,256}$":
 type: string
 minLength: 0
 maxLength: 1024

Here's an example:

Request format 117

Amazon Data Firehose Developer Guide

"commonAttributes": {
 "deployment -context": "pre-prod-gamma",
 "device-types": ""
 }

Body - Max Size

The maximum body size is configured by you, and can be up to a maximum of 64 MiB, before
compression.

Body - Schema

The body carries a single JSON document with the following JSON Schema (written in YAML):

"$schema": http://json-schema.org/draft-07/schema#

title: FirehoseCustomHttpsEndpointRequest
description: >
 The request body that the Firehose service sends to
 custom HTTPS endpoints.
type: object
properties:
 requestId:
 description: >
 Same as the value in the X-Amz-Firehose-Request-Id header,
 duplicated here for convenience.
 type: string
 timestamp:
 description: >
 The timestamp (milliseconds since epoch) at which the Firehose
 server generated this request.
 type: integer
 records:
 description: >
 The actual records of the Firehose stream, carrying
 the customer data.
 type: array
 minItems: 1
 maxItems: 10000
 items:

Request format 118

Amazon Data Firehose Developer Guide

 type: object
 properties:
 data:
 description: >
 The data of this record, in Base64. Note that empty
 records are permitted in Firehose. The maximum allowed
 size of the data, before Base64 encoding, is 1024000
 bytes; the maximum length of this field is therefore
 1365336 chars.
 type: string
 minLength: 0
 maxLength: 1365336

required:
 - requestId
 - records

Here's an example:

{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090901599
 "records": [
 {
 "data": "aGVsbG8="
 },
 {
 "data": "aGVsbG8gd29ybGQ="
 }
]
}

Response format

Default Behavior on Error

If a response fails to conform to the requirements below, the Firehose server treats it as though
it had a 500 status code with no body.

Response format 119

Amazon Data Firehose Developer Guide

Status Code

The HTTP status code MUST be in the 2XX, 4XX or 5XX range.

The Amazon Data Firehose server does NOT follow redirects (3XX status codes). Only response
code 200 is considered as a successful delivery of the records to HTTP/EP. Response code
413 (size exceeded) is considered as a permanent failure and the record batch is not sent to
error bucket if configured. All other response codes are considered as retriable errors and are
subjected to back-off retry algorithm explained later.

Headers - Content Type

The only acceptable content type is application/json.

HTTP Headers - Content-Encoding

Content-Encoding MUST NOT be used. The body MUST be uncompressed.

HTTP Headers - Content-Length

The Content-Length header MUST be present if the response has a body.

Body - Max Size

The response body must be 1 MiB or less in size.

"$schema": http://json-schema.org/draft-07/schema#

title: FirehoseCustomHttpsEndpointResponse

description: >
 The response body that the Firehose service sends to
 custom HTTPS endpoints.
type: object
properties:
 requestId:
 description: >
 Must match the requestId in the request.
 type: string

 timestamp:
 description: >
 The timestamp (milliseconds since epoch) at which the

Response format 120

Amazon Data Firehose Developer Guide

 server processed this request.
 type: integer

 errorMessage:
 description: >
 For failed requests, a message explaining the failure.
 If a request fails after exhausting all retries, the last
 Instance of the error message is copied to error output
 S3 bucket if configured.
 type: string
 minLength: 0
 maxLength: 8192
required:
 - requestId
 - timestamp

Here's an example:

Failure Case (HTTP Response Code 4xx or 5xx)
{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": "1578090903599",
 "errorMessage": "Unable to deliver records due to unknown error."
}
Success case (HTTP Response Code 200)
{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090903599
}

Error Response Handling

In all error cases the Amazon Data Firehose server reattempts delivery of the same batch of
records using an exponential back-off algorithm. The retries are backed off using an initial back-
off time (1 second) with a jitter factor of (15%) and each subsequent retry is backed off using
the formula (initial-backoff-time * (multiplier(2) ^ retry_count)) with added jitter. The backoff
time is capped by a maximum interval of 2 minutes. For example on the ‘n’-th retry the back off
time is = MAX(120, 2^n) * random(0.85, 1.15).

Response format 121

Amazon Data Firehose Developer Guide

The parameters specified in the previous equation are subject to change. Refer to the AWS
Firehose documentation for exact initial back off time, max backoff time, multiplier and jitter
percentages used in exponential back off algorithm.

In each subsequent retry attempt the access key and/or destination to which records are
delivered might change based on updated configuration of the Firehose stream. Amazon Data
Firehose service uses the same request-id across retries in a best-effort manner. This last feature
can be used for deduplication purpose by the HTTP end point server. If the request is still not
delivered after the maximum time allowed (based on Firehose stream configuration) the batch
of records can optionally be delivered to an error bucket based on stream configuration.

Examples

Example of a CWLog sourced request.

{
 "requestId": "ed4acda5-034f-9f42-bba1-f29aea6d7d8f",
 "timestamp": 1578090901599,
 "records": [
 {
 "data": {
 "messageType": "DATA_MESSAGE",
 "owner": "123456789012",
 "logGroup": "log_group_name",
 "logStream": "log_stream_name",
 "subscriptionFilters": [
 "subscription_filter_name"
],
 "logEvents": [
 {
 "id": "0123456789012345678901234567890123456789012345",
 "timestamp": 1510109208016,
 "message": "log message 1"
 },
 {
 "id": "0123456789012345678901234567890123456789012345",
 "timestamp": 1510109208017,
 "message": "log message 2"
 }
]

Examples 122

Amazon Data Firehose Developer Guide

 }
 }
]
}

Handle data delivery failures

Each Amazon Data Firehose destination has its own data delivery failure handling.

When you setup a Firehose stream, for many destinations such as OpenSearch, Splunk, and HTTP
endpoints, you also setup an S3 bucket where data that fails to be delivered can be backed up. For
more information about how Firehose backs up data in case of failed deliveries, see the relevant
destination sections on this page. For more information about how to grant access to S3 buckets
where data that fails to be delivered can be backed up, see Grant Firehose Access to an Amazon S3
Destination. When Firehose (a) fails to deliver data to the stream destination, and (b) fails to write
data to the backup S3 bucket for failed deliveries, it effectively pauses stream delivery until such
time that data can either be delivered to the destination or written to the backup S3 location.

Amazon S3

Data delivery to your S3 bucket might fail for various reasons. For example, the bucket might not
exist anymore, the IAM role that Amazon Data Firehose assumes might not have access to the
bucket, the network failed, or similar events. Under these conditions, Amazon Data Firehose keeps
retrying for up to 24 hours until the delivery succeeds. The maximum data storage time of Amazon
Data Firehose is 24 hours. If data delivery fails for more than 24 hours, your data is lost.

Data delivery to your S3 bucket can fail for various reasons, such as:

• The bucket no longer exists.

• The IAM role assumed by Amazon Data Firehose lacks access to the bucket.

• Network issues.

• S3 errors, such as HTTP 500s or other API failures.

In these cases, Amazon Data Firehose will retry delivery:

• DirectPut sources: Retries continue for up to 24 hours.

Handle data delivery failures 123

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3

Amazon Data Firehose Developer Guide

• Kinesis Data Streams or Amazon MSK sources: Retries continue indefinitely, up to the retention
policy defined on the stream.

Amazon Data Firehose delivers failed records to a S3 error bucket only when Lambda processing or
parquet conversion fails. Other failure scenarios will result in continuous retry attempts to S3 until
the retention period is reached. When Firehose successfully delivers records to S3, it creates an S3
object file, and in cases of partial record failures, it automatically retries delivery and updates the
same S3 object file with the successfully processed records.

Amazon Redshift

For an Amazon Redshift destination, you can specify a retry duration (0–7200 seconds) when
creating a Firehose stream.

Data delivery to your Amazon Redshift provisioned cluster or Amazon Redshift Serverless
workgroup might fail for several reasons. For example, you might have an incorrect cluster
configuration of your Firehose stream, a cluster or workgroup under maintenance, or a network
failure. Under these conditions, Amazon Data Firehose retries for the specified time duration and
skips that particular batch of Amazon S3 objects. The skipped objects' information is delivered to
your S3 bucket as a manifest file in the errors/ folder, which you can use for manual backfill. For
information about how to COPY data manually with manifest files, see Using a Manifest to Specify
Data Files.

Amazon OpenSearch Service and OpenSearch Serverless

For the OpenSearch Service and OpenSearch Serverless destination, you can specify a retry
duration (0–7200 seconds) during Firehose stream creation.

Data delivery to your OpenSearch Service cluster or OpenSearch Serverless collection might
fail for several reasons. For example, you might have an incorrect OpenSearch Service cluster or
OpenSearch Serverless collection configuration of your Firehose stream, an OpenSearch Service
cluster or OpenSearch Serverless collection under maintenance, a network failure, or similar
events. Under these conditions, Amazon Data Firehose retries for the specified time duration and
then skips that particular index request. The skipped documents are delivered to your S3 bucket in
the AmazonOpenSearchService_failed/ folder, which you can use for manual backfill.

For OpenSearch Service, each document has the following JSON format:

{

Amazon Redshift 124

https://docs.aws.amazon.com/redshift/latest/dg/loading-data-files-using-manifest.html
https://docs.aws.amazon.com/redshift/latest/dg/loading-data-files-using-manifest.html

Amazon Data Firehose Developer Guide

 "attemptsMade": "(number of index requests attempted)",
 "arrivalTimestamp": "(the time when the document was received by Firehose)",
 "errorCode": "(http error code returned by OpenSearch Service)",
 "errorMessage": "(error message returned by OpenSearch Service)",
 "attemptEndingTimestamp": "(the time when Firehose stopped attempting index
 request)",
 "esDocumentId": "(intended OpenSearch Service document ID)",
 "esIndexName": "(intended OpenSearch Service index name)",
 "esTypeName": "(intended OpenSearch Service type name)",
 "rawData": "(base64-encoded document data)"
}

For OpenSearch Serverless, each document has the following JSON format:

{
 "attemptsMade": "(number of index requests attempted)",
 "arrivalTimestamp": "(the time when the document was received by Firehose)",
 "errorCode": "(http error code returned by OpenSearch Serverless)",
 "errorMessage": "(error message returned by OpenSearch Serverless)",
 "attemptEndingTimestamp": "(the time when Firehose stopped attempting index
 request)",
 "osDocumentId": "(intended OpenSearch Serverless document ID)",
 "osIndexName": "(intended OpenSearch Serverless index name)",
 "rawData": "(base64-encoded document data)"
}

Splunk

When Amazon Data Firehose sends data to Splunk, it waits for an acknowledgment from Splunk. If
an error occurs, or the acknowledgment doesn’t arrive within the acknowledgment timeout period,
Amazon Data Firehose starts the retry duration counter. It keeps retrying until the retry duration
expires. After that, Amazon Data Firehose considers it a data delivery failure and backs up the data
to your Amazon S3 bucket.

Every time Amazon Data Firehose sends data to Splunk, whether it's the initial attempt or a
retry, it restarts the acknowledgement timeout counter. It then waits for an acknowledgement
to arrive from Splunk. Even if the retry duration expires, Amazon Data Firehose still waits for
the acknowledgment until it receives it or the acknowledgement timeout is reached. If the
acknowledgment times out, Amazon Data Firehose checks to determine whether there's time left

Splunk 125

Amazon Data Firehose Developer Guide

in the retry counter. If there is time left, it retries again and repeats the logic until it receives an
acknowledgment or determines that the retry time has expired.

A failure to receive an acknowledgement isn't the only type of data delivery error that can occur.
For information about the other types of data delivery errors, see Splunk Data Delivery Errors. Any
data delivery error triggers the retry logic if your retry duration is greater than 0.

The following is an example error record.

{
 "attemptsMade": 0,
 "arrivalTimestamp": 1506035354675,
 "errorCode": "Splunk.AckTimeout",
 "errorMessage": "Did not receive an acknowledgement from HEC before the HEC
 acknowledgement timeout expired. Despite the acknowledgement timeout, it's possible
 the data was indexed successfully in Splunk. Amazon Data Firehose backs up in Amazon
 S3 data for which the acknowledgement timeout expired.",
 "attemptEndingTimestamp": 13626284715507,
 "rawData":
 "MiAyNTE2MjAyNzIyMDkgZW5pLTA1ZjMyMmQ1IDIxOC45Mi4xODguMjE0IDE3Mi4xNi4xLjE2NyAyNTIzMyAxNDMzIDYgMSA0MCAxNTA2MDM0NzM0IDE1MDYwMzQ3OTQgUkVKRUNUIE9LCg==",
 "EventId": "49577193928114147339600778471082492393164139877200035842.0"
}

HTTP endpoint destination

When Amazon Data Firehose sends data to an HTTP endpoint destination, it waits for a response
from this destination. If an error occurs, or the response doesn’t arrive within the response timeout
period, Amazon Data Firehose starts the retry duration counter. It keeps retrying until the retry
duration expires. After that, Amazon Data Firehose considers it a data delivery failure and backs up
the data to your Amazon S3 bucket.

Every time Amazon Data Firehose sends data to an HTTP endpoint destination, whether it's the
initial attempt or a retry, it restarts the response timeout counter. It then waits for a response
to arrive from the HTTP endpoint destination. Even if the retry duration expires, Amazon Data
Firehose still waits for the response until it receives it or the response timeout is reached. If the
response times out, Amazon Data Firehose checks to determine whether there's time left in the
retry counter. If there is time left, it retries again and repeats the logic until it receives a response or
determines that the retry time has expired.

A failure to receive a response isn't the only type of data delivery error that can occur. For
information about the other types of data delivery errors, see HTTP Endpoint Data Delivery Errors

HTTP endpoint destination 126

https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-splunk-errors
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html#monitoring-http-errors

Amazon Data Firehose Developer Guide

The following is an example error record.

{
 "attemptsMade":5,
 "arrivalTimestamp":1594265943615,
 "errorCode":"HttpEndpoint.DestinationException",
 "errorMessage":"Received the following response from the endpoint destination.
 {"requestId": "109777ac-8f9b-4082-8e8d-b4f12b5fc17b", "timestamp": 1594266081268,
 "errorMessage": "Unauthorized"}",
 "attemptEndingTimestamp":1594266081318,
 "rawData":"c2FtcGxlIHJhdyBkYXRh",
 "subsequenceNumber":0,
 "dataId":"49607357361271740811418664280693044274821622880012337186.0"
}

Snowflake

For Snowflake destination, when you create a Firehose stream, you can specify an optional retry
duration (0-7200 seconds). The default value for retry duration is 60 seconds.

Data delivery to your Snowflake table might fail for several reasons like an incorrect Snowflake
destination configuration, Snowflake outage, a network failure, etc. The retry policy doesn’t apply
to non-retriable errors. For example, if Snowflake rejects your JSON payload because it had an
extra column that's missing in the table, Firehose doesn’t attempt to deliver it again. Instead, it
creates a back up for all the insert failures due to JSON payload issues to your S3 error bucket.

Similarly, if delivery fails due to an incorrect role, table, or database, Firehose doesn’t retry and
writes the data to your S3 bucket. Retry duration only applies to failure due to a Snowflake service
issue, transient network glitches, etc. Under these conditions, Firehose retries for the specified time
duration before delivering them to S3. The failed records are delivered in snowflake-failed/ folder,
which you can use for manual backfill.

The following is an example JSON for each record that you deliver to S3.

{
 "attemptsMade": 3,
 "arrivalTimestamp": 1594265943615,
 "errorCode": "Snowflake.InvalidColumns",
 "errorMessage": "Snowpipe Streaming does not support columns of type AUTOINCREMENT,
 IDENTITY, GEO, or columns with a default value or collation",
 "attemptEndingTimestamp": 1712937865543,

Snowflake 127

Amazon Data Firehose Developer Guide

 "rawData": "c2FtcGxlIHJhdyBkYXRh"
}

Configure Amazon S3 object name format

When Firehose delivers data to Amazon S3, S3 object key name follows the format <evaluated
prefix><suffix>, where the suffix has the format <Firehose stream name>-<Firehose stream
version>-<year>-<month>-<day>-<hour>-<minute>-<second>-<uuid><file extension> <Firehose
stream version> begins with 1 and increases by 1 for every configuration change of Firehose
stream. You can change Firehose stream configurations (for example, the name of the S3 bucket,
buffering hints, compression, and encryption). You can do so by using the Firehose console or the
UpdateDestination API operation.

For <evaluated prefix>, Firehose adds a default time prefix in the format YYYY/MM/dd/HH. This
prefix creates a logical hierarchy in the bucket, where each forward slash (/) creates a level in the
hierarchy. You can modify this structure by specifying a custom prefix that includes expressions
that are evaluated at runtime. For information about how to specify a custom prefix, see Custom
Prefixes for Amazon Simple Storage Service Objects.

By default, the time zone used for time prefix and suffix is in UTC, but you can change it to a
time zone that you prefer. For example, to use Japan Standard Time instead of UTC, you can
configure the time zone to Asia/Tokyo in the AWS Management Console or in API parameter
setting (CustomTimeZone). The following list contains time zones that Firehose supports for S3
prefix configuration.

Supported time zones

Following is a list of time zones that Firehose supports for S3 prefix configuration.

Africa

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmera
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre

Configure Amazon S3 object name format 128

https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html

Amazon Data Firehose Developer Guide

Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Timbuktu
Africa/Tripoli
Africa/Tunis
Africa/Windhoek

America

America/Adak

Configure Amazon S3 object name format 129

Amazon Data Firehose Developer Guide

America/Anchorage
America/Anguilla
America/Antigua
America/Aruba
America/Asuncion
America/Barbados
America/Belize
America/Bogota
America/Buenos_Aires
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Costa_Rica
America/Cuiaba
America/Curacao
America/Dawson_Creek
America/Denver
America/Dominica
America/Edmonton
America/El_Salvador
America/Fortaleza
America/Godthab
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Indianapolis
America/Jamaica
America/La_Paz
America/Lima
America/Los_Angeles
America/Managua
America/Manaus
America/Martinique
America/Mazatlan
America/Mexico_City
America/Miquelon
America/Montevideo
America/Montreal

Configure Amazon S3 object name format 130

Amazon Data Firehose Developer Guide

America/Montserrat
America/Nassau
America/New_York
America/Noronha
America/Panama
America/Paramaribo
America/Phoenix
America/Port_of_Spain
America/Port-au-Prince
America/Porto_Acre
America/Puerto_Rico
America/Regina
America/Rio_Branco
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Tegucigalpa
America/Thule
America/Tijuana
America/Tortola
America/Vancouver
America/Winnipeg

Antarctica

Antarctica/Casey
Antarctica/DumontDUrville
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer

Asia

Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr

Configure Amazon S3 object name format 131

Amazon Data Firehose Developer Guide

Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Ashkhabad
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Calcutta
Asia/Colombo
Asia/Dacca
Asia/Damascus
Asia/Dhaka
Asia/Dubai
Asia/Dushanbe
Asia/Hong_Kong
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Katmandu
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuwait
Asia/Macao
Asia/Magadan
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novosibirsk
Asia/Phnom_Penh
Asia/Pyongyang
Asia/Qatar
Asia/Rangoon
Asia/Riyadh
Asia/Saigon
Asia/Seoul
Asia/Shanghai

Configure Amazon S3 object name format 132

Amazon Data Firehose Developer Guide

Asia/Singapore
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimbu
Asia/Thimphu
Asia/Tokyo
Asia/Ujung_Pandang
Asia/Ulaanbaatar
Asia/Ulan_Bator
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan

Atlantic

Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faeroe
Atlantic/Jan_Mayen
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley

Australia

Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Hobart
Australia/Lord_Howe
Australia/Perth
Australia/Sydney

Configure Amazon S3 object name format 133

Amazon Data Firehose Developer Guide

Europe

Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Helsinki
Europe/Istanbul
Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/Simferopol
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Vaduz
Europe/Vienna
Europe/Vilnius
Europe/Warsaw
Europe/Zurich

Configure Amazon S3 object name format 134

Amazon Data Firehose Developer Guide

Indian

Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion

Pacific

Pacific/Apia
Pacific/Auckland
Pacific/Chatham
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Majuro
Pacific/Marquesas
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Ponape
Pacific/Port_Moresby

Configure Amazon S3 object name format 135

Amazon Data Firehose Developer Guide

Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Truk
Pacific/Wake
Pacific/Wallis

You cannot change the suffix field except <file extension>. When you enable data format
conversion or compression, Firehose will append a file extension based on the configuration. The
following table explains the default file extension appended by Firehose:

Configuration File extension

Data Format Conversion:
Parquet

.parquet

Data Format Conversion:
ORC

.orc

Compression: Gzip .gz

Compression: Zip .zip

Compression: Snappy .snappy

Compression: Hadoop-
Snappy

.hsnappy

You can also specify a file extension that you prefer in the Firehose console or API. File extension
must start with a period (.) and can contain allowed characters: 0-9a-z!-_.*‘(). File extension cannot
exceed 128 characters.

Note

When you specify a file extension, it will override the default file extension that Firehose
adds when data format conversion or compression is enabled.

Configure Amazon S3 object name format 136

https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html

Amazon Data Firehose Developer Guide

Understand custom prefixes for Amazon S3 objects

Objects delivered to Amazon S3 follow the name format of <evaluated prefix><suffix>. You can
specify your custom prefix that includes expressions that are evaluated at runtime. Custom prefix
you specify will override the default prefix of yyyy/MM/dd/HH.

You can use expressions of the following forms in your custom prefix: !{namespace:value},
where namespace can be one of the following, as explained in the following sections.

• firehose

• timestamp

• partitionKeyFromQuery

• partitionKeyFromLambda

If a prefix ends with a slash, it appears as a folder in the Amazon S3 bucket. For more information,
see Amazon S3 Object Name Format in the Amazon Data FirehoseDeveloper Guide.

timestamp namespace

Valid values for this namespace are strings that are valid Java DateTimeFormatter strings. As an
example, in the year 2018, the expression !{timestamp:yyyy} evaluates to 2018.

When evaluating timestamps, Firehose uses the approximate arrival timestamp of the oldest record
that's contained in the Amazon S3 object being written.

By default, timestamp is in UTC. But, you can specify a time zone that you prefer. For example, you
can configure the time zone to Asia/Tokyo in the AWS Management Console or in API parameter
setting (CustomTimeZone) if you want to use Japan Standard Time instead of UTC. To see the list
of supported time zones, see Amazon S3 Object Name Format.

If you use the timestamp namespace more than once in the same prefix expression, every instance
evaluates to the same instant in time.

firehose namespace

There are two values that you can use with this namespace: error-output-type and random-
string. The following table explains how to use them.

Understand custom prefixes for Amazon S3 objects 137

https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-namekey
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ExtendedS3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name

Amazon Data Firehose Developer Guide

The firehose namespace values

Conversion Description Example input Example output Notes

error-out
put-type

Evaluates to one
of the following
strings,
depending on
the configura
tion of your
Firehose
stream, and
the reason of
failure: {processi
ng-failed,
AmazonOpe
nSearchService-
failed, splunk-fa
iled, format-co
nversion-failed,
http-endpoint-
failed}.

If you use it
more than once
in the same
expression,
every instance
evaluates to
the same error
string..

myPrefix/
result=!{
firehose:
error-out
put-type}
/!{timest
amp:yyyy/
MM/dd}

myPrefix/
result=pr
ocessing-
failed/20
18/08/03

The error-out
put-type value
can only be used
in the ErrorOutp
utPrefix field.

random-st
ring

Evaluates to a
random string of
11 characters. If
you use it more
than once in the
same expressio

myPrefix/
!{firehos
e:random-
string}/

myPrefix/
046b6c7f-
0b/

You can use it
with both prefix
types.

You can place it
at the beginning

Understand custom prefixes for Amazon S3 objects 138

Amazon Data Firehose Developer Guide

Conversion Description Example input Example output Notes

n, every instance
evaluates to a
new random
string.

of the format
string to get
a randomized
prefix, which
is sometimes
necessary
for attaining
extremely high
throughput with
Amazon S3.

partitionKeyFromLambda and partitionKeyFromQuery namespaces

For dynamic partitioning, you must use the following expression format in your S3 bucket
prefix: !{namespace:value}, where namespace can be either partitionKeyFromQuery or
partitionKeyFromLambda, or both. If you are using inline parsing to create the partitioning
keys for your source data, you must specify an S3 bucket prefix value that consists of expressions
specified in the following format: "partitionKeyFromQuery:keyID". If you are using
an AWS Lambda function to create partitioning keys for your source data, you must specify
an S3 bucket prefix value that consists of expressions specified in the following format:
"partitionKeyFromLambda:keyID". For more information, see the "Choose Amazon S3 for
Your Destination" in Creating an Amazon Firehose stream.

Semantic rules

The following rules apply to Prefix and ErrorOutputPrefix expressions.

• For the timestamp namespace, any character that isn't in single quotes is evaluated. In other
words, any string escaped with single quotes in the value field is taken literally.

• If you specify a prefix that doesn't contain a timestamp namespace expression, Firehose appends
the expression !{timestamp:yyyy/MM/dd/HH/}to the value in the Prefix field.

• The sequence !{ can only appear in !{namespace:value} expressions.

• ErrorOutputPrefix can be null only if Prefix contains no expressions. In this case, Prefix
evaluates to <specified-prefix>yyyy/MM/DDD/HH/ and ErrorOutputPrefix evaluates to

Understand custom prefixes for Amazon S3 objects 139

Amazon Data Firehose Developer Guide

<specified-prefix><error-output-type>yyyy/MM/DDD/HH/. DDD represents the day of
the year.

• If you specify an expression for ErrorOutputPrefix, you must include at least one instance of
!{firehose:error-output-type}.

• Prefix can't contain !{firehose:error-output-type}.

• Neither Prefix nor ErrorOutputPrefix can be greater than 512 characters after they're
evaluated.

• If the destination is Amazon Redshift, Prefix must not contain expressions and
ErrorOutputPrefix must be null.

• When the destination is Amazon OpenSearch Service or Splunk, and no ErrorOutputPrefix is
specified, Firehose uses the Prefix field for failed records.

• When the destination is Amazon S3, the Prefix and ErrorOutputPrefix in the Amazon S3
destination configuration are used for successful records and failed records, respectively. If you
use the AWS CLI or the API, you can use ExtendedS3DestinationConfiguration to specify
an Amazon S3 backup configuration with its own Prefix and ErrorOutputPrefix.

• When you use the AWS Management Console and set the destination to Amazon S3, Firehose
uses the Prefix and ErrorOutputPrefix in the destination configuration for successful
records and failed records, respectively. If you specify a prefix using expressions, you must specify
the error prefix including !{firehose:error-output-type}.

• When you use ExtendedS3DestinationConfiguration with the AWS CLI, the API, or AWS
CloudFormation, if you specify a S3BackupConfiguration, Firehose doesn't provide a default
ErrorOutputPrefix.

• You cannot use partitionKeyFromLambda and partitionKeyFromQuery namespaces when
creating ErrorOutputPrefix expressions.

Example prefixes

Prefix and ErrorOutputPrefix examples

Input Evaluated prefix (at 10:30 AM UTC on Aug
27, 2018)

Prefix: Unspecified Prefix: 2018/08/27/10

Understand custom prefixes for Amazon S3 objects 140

Amazon Data Firehose Developer Guide

Input Evaluated prefix (at 10:30 AM UTC on Aug
27, 2018)

ErrorOutputPrefix : myFirehos
eFailures/!{firehose:error-
output-type}/

ErrorOutputPrefix : myFirehos
eFailures/processing-failed/

Prefix: !{timestamp:yyyy/MM/dd}

ErrorOutputPrefix : Unspecified

Invalid input: ErrorOutputPrefix can't be
null when Prefix contains expressions

Prefix: myFirehose/DeliveredYear=!
{timestamp:yyyy}/anyMonth/ra
nd=!{firehose:random-string}

ErrorOutputPrefix : myFirehos
eFailures/!{firehose:error-
output-type}/!{timestamp:yyyy}/
anyMonth/!{timestamp:dd}

Prefix: myFirehose/Deliver
edYear=2018/anyMonth/rand=5
abf82daaa5

ErrorOutputPrefix : myFirehos
eFailures/processing-failed
/2018/anyMonth/10

Prefix: myPrefix/year=!{ti
mestamp:yyyy}/month=!{times
tamp:MM}/day=!{timestamp:dd}/
hour=!{timestamp:HH}/

ErrorOutputPrefix : myErrorPrefix/
year=!{timestamp:yyyy}/month=!
{timestamp:MM}/day=!{timesta
mp:dd}/hour=!{timestamp:HH}/!
{firehose:error-output-type}

Prefix: myPrefix/year=2018/
month=07/day=06/hour=23/

ErrorOutputPrefix : myErrorPrefix/
year=2018/month=07/day=06/hour=
23/processing-failed

Prefix: myFirehosePrefix/

ErrorOutputPrefix : Unspecified

Prefix: myFirehosePrefix/2
018/08/27/

ErrorOutputPrefix : myFirehos
ePrefix/processing-failed/2
018/08/27/

Understand custom prefixes for Amazon S3 objects 141

Amazon Data Firehose Developer Guide

Configure index rotation for OpenSearch Service

For the OpenSearch Service destination, you can specify a time-based index rotation option from
one of the following five options: NoRotation, OneHour, OneDay, OneWeek, or OneMonth.

Depending on the rotation option you choose, Amazon Data Firehose appends a portion of
the UTC arrival timestamp to your specified index name. It rotates the appended timestamp
accordingly. The following example shows the resulting index name in OpenSearch Service for each
index rotation option, where the specified index name is myindex and the arrival timestamp is
2016-02-25T13:00:00Z.

RotationPeriod IndexName

NoRotation myindex

OneHour myindex-2016-02-25-13

OneDay myindex-2016-02-25

OneWeek myindex-2016-w08

OneMonth myindex-2016-02

Note

With the OneWeek option, Data Firehose auto-create indexes using the format of <YEAR>-
w<WEEK NUMBER> (for example, 2020-w33), where the week number is calculated using
UTC time and according to the following US conventions:

• A week starts on Sunday

• The first week of the year is the first week that contains a Saturday in this year

Pause and resume data delivery

After you setup a Firehose stream, data available in the stream source is continuously delivered
to the destination. If you encounter situations where your stream destination is temporarily

Configure index rotation for OpenSearch Service 142

Amazon Data Firehose Developer Guide

unavailable (for example, during planned maintenance operations), you may want to temporarily
pause data delivery, and resume when the destination becomes available again.

Important

When you use the approach described below to pause and resume a stream, after you
resume the stream, you will see that few records get delivered to the error bucket in
Amazon S3 while the rest of the stream continues to get delivered to the destination. This
is a known limitation of the approach, and it occurs because a small number of records that
could not be previously delivered to the destination after multiple retries are tracked as
failed.

Pause a Firehose stream

To pause stream delivery in Firehose, first remove permissions for Firehose to write to the S3
backup location for failed deliveries. For example, if you want to pause the Firehose stream with an
OpenSearch destination, you can do this by updating permissions. For more information, see Grant
Firehose Access to a Public OpenSearch Service Destination.

Remove the "Effect": "Allow" permission for the action s3:PutObject, and explicitly add
a statement that applies Effect": "Deny" permission on the action s3:PutObject for the S3
bucket used for backing up failed deliveries. Next, turn off the stream destination (for example,
turning off the destination OpenSearch domain), or remove permissions for Firehose to write to the
destination. To update permissions for other destinations, check the section for your destination in
Controlling Access with Amazon Data Firehose. After you complete these two actions, Firehose will
stop delivering streams, and you can monitor this using CloudWatch metrics for Firehose.

Important

When you pause stream delivery in Firehose, you need to ensure that the source of
the stream (for example, in Kinesis Data Streams or in Managed Service for Kafka) is
configured to retain data until stream delivery is resumed and the data gets delivered to
the destination. If the source is DirectPUT, Firehose will retain data for 24 hours. Data loss
could happen if you do not resume the stream and deliver the data before the expiration of
data retention period.

Pause a Firehose stream 143

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html
https://docs.aws.amazon.com/firehose/latest/dev/cloudwatch-metrics.html

Amazon Data Firehose Developer Guide

Resume a Firehose stream

To resume delivery, first revert the change made earlier to the stream destination by turning on the
destination and ensuring that Firehose has permissions to deliver the stream to the destination.
Next, revert the changes made earlier to permissions applied to the S3 bucket for backing up failed
deliveries. That is, apply "Effect": "Allow" permission for the action s3:PutObject, and
remove "Effect": "Deny" permission on the action s3:PutObject for the S3 bucket used
for backing up failed deliveries. Finally, monitor using CloudWatch metrics for Firehose to confirm
that the stream is being delivered to the destination. To view and troubleshoot errors, use Amazon
CloudWatch Logs monitoring for Firehose.

Resume a Firehose stream 144

https://docs.aws.amazon.com/firehose/latest/dev/cloudwatch-metrics.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/monitoring-with-cloudwatch-logs.html

Amazon Data Firehose Developer Guide

Deliver data to Apache Iceberg Tables with Amazon Data
Firehose

Apache Iceberg is a high-performance open-source table format for performing big data analytics.
Apache Iceberg brings the reliability and simplicity of SQL tables to Amazon S3 data lakes, and
makes it possible for open-source analytics engines like Spark, Flink, Trino, Hive, and Impala to
work with the same data concurrently. For more information about Apache Iceberg, see https://
iceberg.apache.org/.

You can use Firehose to deliver streaming data to Apache Iceberg Tables in Amazon S3. Your
Apache Iceberg Tables can be in self-managed in Amazon S3 or hosted in Amazon S3 Tables. In
self-managed Iceberg tables, you manage all the table optimizations such as compaction, and
snapshot expiration. Amazon S3 Tables provide storage that is optimized for large-scale analytics
workloads, with features that continuously improve query performance and reduce storage costs
for tabular data. For more information on Amazon S3 Tables, see Amazon S3 Tables.

This feature allows you to route records from a single stream into different Apache Iceberg Tables.
You can automatically apply insert, update, and delete operations to records in those tables. It
also supports fine-grained data access control on Apache Iceberg tables in Amazon S3 with AWS
Lake Formation. You can specify access controls centrally in AWS Lake Formation and provide more
granular table-level and column-level permissions for Firehose.

Consideration and limitations

Note

Firehose supports Apache Iceberg Tables as a destination in all AWS Regions except China
Regions, AWS GovCloud (US) Regions, and Asia Pacific (Malaysia).

Firehose support for Apache Iceberg tables has the following considerations and limitations.

• Throughput – If you use Direct PUT as the source to deliver data to Apache Iceberg tables, then
the maximum throughput per stream is 5 MiB/second in US East (N. Virginia), US West (Oregon),
and Europe (Ireland) Regions and 1 MiB/second in all other AWS Regions. If you want to insert
data to Iceberg tables with no updates and deletes and you want higher throughput for your
stream, then you can use the Firehose Limits form to request a throughput limit increase.

Consideration and limitations 145

https://iceberg.apache.org/
https://iceberg.apache.org/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables.html
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region
https://support.console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase%26limitType=kinesis-firehose-limits

Amazon Data Firehose Developer Guide

You can also set the AppendOnly flag to True if you want to only insert data and not perform
updates and deletes. By setting the AppendOnly flag to True, Firehose automatically scales to
match your throughput. Currently, you can set this flag only with the CreateDeliveryStream API
operation.

If a Direct PUT stream experiences throttling due to higher data ingest volumes that exceed the
throughput capacity of a Firehose stream, then Firehose automatically increases the throughput
limit of the stream until the throttling is contained. Depending on increased throughput and
throttling, it might take longer for Firehose to increase the throughput of a stream to the desired
levels. Because of this, continue to retry the failed data ingest records. If you expect the data
volume to increase in sudden large bursts, or if your new stream needs a higher throughput than
the default throughput limit, request to increase the throughput limit.

• S3 Transaction Per Second (TPS) – To optimize S3 performance, if you are using Kinesis Data
Streams or Amazon MSK as a source, we recommend that you partition the source record using
a proper partition key. In that way, data records that are routed to the same Iceberg table are
mapped to one or a few source partitions know as shards. If possible, spread data records
belonging to different target Iceberg tables into different partitions/shards, so that you can
use all the aggregate throughput available across all the partitions/shards of the source topic/
stream.

• Columns – For column names and values, Firehose takes only the first level of nodes in a multi-
level nested JSON. For example, Firehose selects the nodes that are available in the first level
including the position field. The column names and the data types of the source data should
match with that of target tables for Firehose to deliver successfully. In this case, Firehose expects
that you have either struct or map data type column in your Iceberg tables to match the position
field. Firehose supports 16 levels of nesting. Following is an example of a nested JSON.

{
 "version":"2016-04-01",
 "deviceId":"<solution_unique_device_id>",
 "sensorId":"<device_sensor_id>",
 "timestamp":"2024-01-11T20:42:45.000Z",
 "value":"<actual_value>",
 "position":{
 "x":143.595901,
 "y":476.399628,
 "z":0.24234876
 }

Consideration and limitations 146

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html

Amazon Data Firehose Developer Guide

}

If the column names or data types do not match, then Firehose throws an error and delivers
data to the S3 error bucket. If all the column names and data types match in the Apache Iceberg
tables, but you have an additional field present in the source record, Firehose skips the new field.

• One JSON object per record – You can send only one JSON object in one Firehose record. If you
aggregate and send multiple JSON objects inside a record, Firehose throws an error and delivers
data to the S3 error bucket. If you aggregate records with KPL and ingest data into Firehose with
Amazon Kinesis Data Streams as source, then Firehose automatically de-aggregates and uses one
JSON object per record.

• Compaction and storage optimization – Every time you write to Iceberg Tables using Firehose,
it commits and generates snapshots, data files and delete files. Having many data files increases
metadata overhead and affects read performance. To get efficient query performance, you might
want to consider a solution that periodically takes small data files and rewrites them into fewer
larger data files. This process is called compaction. AWS Glue Data Catalog supports automatic
compaction of your Apache Iceberg Tables. For more information, see Compaction management
in the AWS Glue User Guide. For additional information, see Automatic compaction of Apache
Iceberg Tables. Alternatively, you can run the Athena Optimize command to perform compaction
manually. For more information about the Optimize command, see Athena Optimize.

Besides compaction of data files, you can also optimize storage consumption with the VACUUM
statement that performs table maintenance on Apache Iceberg tables, such as snapshot
expiration and orphan file removal. Alternatively, you can use AWS Glue Data Catalog that also
supports managed table optimization of Apache Iceberg tables by automatically removing the
data files, orphaned files, and expire snapshots that are no longer needed. For more information,
see this blog post on Storage optimization of Apache Iceberg Tables.

• We do not support Amazon MSK Serverless source for Apache Iceberg Tables as a destination.

• For an update operation, Firehose puts a delete file followed by an insert operation. Putting
delete files incurs Amazon S3 put charges.

Prerequisites to use Apache Iceberg Tables as a destination

Choose from the following options to complete the required prerequisites.

Topics

• Prerequisites to deliver to Iceberg Tables in Amazon S3

Prerequisites 147

https://docs.aws.amazon.com/streams/latest/dev/kpl-with-firehose.html
https://docs.aws.amazon.com/glue/latest/dg/compaction-management.html
https://aws.amazon.com/blogs/aws/aws-glue-data-catalog-now-supports-automatic-compaction-of-apache-iceberg-tables/
https://aws.amazon.com/blogs/aws/aws-glue-data-catalog-now-supports-automatic-compaction-of-apache-iceberg-tables/
https://docs.aws.amazon.com/athena/latest/ug/optimize-statement.html
https://docs.aws.amazon.com/athena/latest/ug/vacuum-statement.html
https://aws.amazon.com/blogs/big-data/the-aws-glue-data-catalog-now-supports-storage-optimization-of-apache-iceberg-tables/

Amazon Data Firehose Developer Guide

• Prerequisites to deliver to Amazon S3 Tables

Prerequisites to deliver to Iceberg Tables in Amazon S3

Before you begin, complete the following prerequisites.

• Create an Amazon S3 bucket – You must create an Amazon S3 bucket to add metadata file path
during tables creation. For more information, see Create an S3 bucket.

• Create an IAM role with required permissions – Firehose needs an IAM role with specific
permissions to access AWS Glue tables and write data to Amazon S3. The same role is used to
grant AWS Glue access to Amazon S3 buckets. You need this IAM role when you create an Iceberg
Table and a Firehose stream. For more information, see Grant Firehose access to Amazon S3
Tables.

• Create Apache Iceberg Tables – If you are configuring unique keys in the Firehose stream for
updates and deletes, Firehose validates if the table and unique keys exist as a part of stream
creation. For this scenario, you must create tables before creating the Firehose stream. You
can use AWS Glue to create Apache Iceberg Tables. For more information, see Creating Apache
Iceberg tables. If you are not configuring unique keys in the Firehose stream, then you don't
require to create Iceberg tables before creating a Firehose stream.

Note

Firehose supports the following table version and format for Apache Iceberg tables.

• Table format version – Firehose only supports V2 table format. Do not create tables in
V1 format, else you get an error and data is delivered to the S3 error bucket instead.

• Data storage format – Firehose writes data to Apache Iceberg Tables in Parquet
format.

• Row level operation – Firehose supports the Merge-on-Read (MOR) mode of writing
data to Apache Iceberg Tables.

Prerequisites to deliver to Amazon S3 Tables

To deliver data to Amazon S3 table buckets, complete the following prerequisites.

Prerequisites to deliver to Iceberg Tables in Amazon S3 148

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/glue/latest/dg/populate-otf.html#creating-iceberg-tables
https://docs.aws.amazon.com/glue/latest/dg/populate-otf.html#creating-iceberg-tables
https://iceberg.apache.org/spec/#version-2

Amazon Data Firehose Developer Guide

• Create an S3 Table bucket, namespace, tables in the table bucket, and other integration steps
outlined in Getting started with Amazon S3 Tables. Column names must be lowercase because
of the limitations imposed by the S3 Tables catalog integration, as specified in S3 tables catalog
integration limitations.

• Create an IAM role with required permissions – Firehose needs an IAM role with specific
permissions to access AWS Glue tables and write data to tables in an Amazon S3 table bucket.
To write to tables in an S3 table bucket, you must also provide the IAM role with the required
permissions in AWS Lake Formation. You configure this IAM role when you create a Firehose
stream. For more information, see Grant Firehose access to Amazon S3 Tables.

• Configure AWS Lake Formation permissions – AWS Lake Formation manages access to your
table resources. Lake Formation uses its own permissions model that enables fine-grained access
control for Data Catalog resources.

For step-by-step integration, refer to the blog Build a data lake for streaming data with Amazon
S3 Tables and Amazon Data Firehose. For additional information, also refer to Using Amazon S3
Tables with AWS analytics services.

Set up the Firehose stream

To create a Firehose stream with Apache Iceberg Tables as your destination you must configure the
following.

Note

The setup of a Firehose stream for delivering to tables in S3 table buckets is the same as
Apache Iceberg Tables in Amazon S3.

Configure source and destination

To deliver data to Apache Iceberg Tables, choose the source for your stream.

To configure your source for your stream, see Configure source settings.

Next, choose Apache Iceberg Tables as the destination and provide a Firehose stream name.

Set up the Firehose stream 149

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-getting-started.html
https://docs.aws.amazon.com/lake-formation/latest/dg/notes-s3-catalog.html
https://docs.aws.amazon.com/lake-formation/latest/dg/notes-s3-catalog.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-s3-tablesusing-iam-iceberg
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-aws.html#grant-permissions-tables
https://aws.amazon.com/blogs/storage/build-a-data-lake-for-streaming-data-with-amazon-s3-tables-and-amazon-data-firehose/
https://aws.amazon.com/blogs/storage/build-a-data-lake-for-streaming-data-with-amazon-s3-tables-and-amazon-data-firehose/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-aws.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-aws.html

Amazon Data Firehose Developer Guide

Configure data transformation

To perform custom transformations on your data, such as adding or modifying records in your
incoming stream, you can add a Lambda function to your Firehose stream. For more information on
data transformation using Lambda in a Firehose stream, see Transform source data in Amazon Data
Firehose.

For Apache Iceberg Tables, you must specify how you want to route incoming records to different
destination tables and the operations that you want to perform. One of the ways to provide the
required routing information to Firehose is using a Lambda function.

For more information, see Route records to different Iceberg tables.

Connect data catalog

Apache Iceberg requires a data catalog to write to Apache Iceberg Tables. Firehose integrates with
AWS Glue Data Catalog for Apache Iceberg Tables.

You can use AWS Glue Data Catalog in the same account as your Firehose stream or in a cross-
account and in the same Region as your Firehose stream (default), or in a different Region.

Configure JQ expressions

For Apache Iceberg Tables, you must specify how you want to route incoming records to different
destination tables and the operations such as insert, update, and delete that you want to
perform. You can do this by configuring JQ expressions for Firehose to parse and get the required
information. For more information, see ???.

Configure unique keys

Updates and Deletes with more than one table – Unique keys are one or more fields in your
source record that uniquely identify a row in Apache Iceberg Tables. If you have insert only scenario
with more than one table, then you do not have to configure unique keys. If you want to do
updates and deletes on certain tables, then you must configure unique keys for those required
tables. Note that update will automatically insert the row if the row in the tables is missing. If you
have only a single table, then you can configure unique keys. For an update operation, Firehose
puts a delete file followed by an insert.

You can either configure unique keys per table as a part of Firehose stream creation or you can
set identifier-field-ids natively in Iceberg during create table or alter table operation. Configuring

Configure data transformation 150

https://iceberg.apache.org/spec/#identifier-field-ids
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#create-table
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#alter-table-set-identifier-fields

Amazon Data Firehose Developer Guide

unique keys per table during stream creation is optional. If you don’t configure unique keys per
table during stream creation, Firehose checks for identifier-field-ids for required tables
and will use them as unique keys. If both are not configured, then delivery of data with update and
delete operations fails.

To configure this section, provide the database name, table name, and unique keys for the
tables where you want to update or delete data. You can have only entry for each table in the
configuration. Optionally, you can also choose to provide an error bucket prefix if data from the
table fails to deliver as shown in the following example.

[
 {
 "DestinationDatabaseName": "MySampleDatabase",
 "DestinationTableName": "MySampleTable",
 "UniqueKeys": [
 "COLUMN_PLACEHOLDER"
],
 "S3ErrorOutputPrefix": "OPTIONAL_PREFIX_PLACEHOLDER"
 }
]

Specify retry duration

You can use this configuration to specify the duration in seconds for which Firehose should attempt
to retry, if it encounters failures in writing to Apache Iceberg Tables in Amazon S3. You can set any
value from 0 to 7200 seconds for performing retries. By default, Firehose retries for 300 seconds.

Handle failed delivery or processing

You must configure Firehose to deliver records to an S3 backup bucket in case it encounters failures
in processing or delivering a stream after expiry of retry duration. For this, configure the S3 backup
bucket and S3 backup bucket error output prefix from Backup settings in console.

Configure buffer hints

Firehose buffers incoming streaming data in memory to a certain size (Buffering size) and for a
certain period of time (Buffering interval) before delivering it to Apache Iceberg Tables. You can
choose a buffer size of 1–128 MiBs and a buffer interval of 0–900 seconds. Higher buffer hints
results in a lower number of S3 writes, less cost of compaction due to larger data files, and faster

Specify retry duration 151

Amazon Data Firehose Developer Guide

query runtime, but with a higher latency. Lower buffer hint values deliver the data with lower
latency.

Configure advanced settings

You can configure server-side encryption, error logging, permissions, and tags for your Apache
Iceberg Tables. For more information, see Configure advanced settings. You must add the IAM role
that you created as part of the ???. Firehose will assume the role to access AWS Glue tables and
write to Amazon S3 buckets.

Firehose stream creation can take several minutes to complete. After you successfully create the
Firehose stream, you can start ingesting data into it and can view the data in Apache Iceberg
tables.

Route incoming records to a single Iceberg table

If you want Firehose to insert data to a single Iceberg table, simply configure a single database
and table in your stream configuration as shown in the following example JSON. For a single table,
you do not require JQ expression and Lambda function for providing the routing information to
Firehose. If you provide these fields along with JQ or Lambda, then Firehose will take input from JQ
or Lambda.

[
 {
 "DestinationDatabaseName": "UserEvents",
 "DestinationTableName": "customer_id",
 "UniqueKeys": [
 "COLUMN_PLACEHOLDER"
],
 "S3ErrorOutputPrefix": "OPTIONAL_PREFIX_PLACEHOLDER"
 }
]

In this example, Firehose routes all input records to customer_id table in UserEvents database.
If you want to perform update or delete operations on a single table, then you must provide the
operation for each incoming record to Firehose using either the JSONQuery method or Lambda
method.

Configure advanced settings 152

Amazon Data Firehose Developer Guide

Route incoming records to different Iceberg tables

Firehose can route incoming records in a stream to different Iceberg tables based on the content of
the record. For example, consider the following sample input record.

{
 "deviceId": "Device1234",
 "timestamp": "2024-11-28T11:30:00Z",
 "data": {
 "temperature": 21.5,
 "location": {
 "latitude": 37.3324,
 "longitude": -122.0311
 }
 },
 "powerlevel": 84,
 "status": "online"
}

{
 "deviceId": "Device4567",
 "timestamp": "2023-11-28T10:40:00Z",
 "data": {
 "pressure": 1012.4,
 "location": {
 "zipcode": 24567
 }
 },
 "powerlevel": 82,
 "status": "online"
}

In this example, the deviceId field has two possible values – Device1234 and Device4567.
When an incoming record has deviceId field as Device1234, we want to write the record
to an Iceberg table named Device1234, and when an incoming record has deviceId field as
Device4567, we want to write the record to a table named Device4567.

Note that the records with Device1234 and Device4567 might have a different set of fields
that map to different columns in the corresponding Iceberg table. The incoming records might
have a nested JSON structure where the deviceId can be nested within the JSON record. In the

Route incoming records to different Iceberg tables 153

Amazon Data Firehose Developer Guide

upcoming sections, we discuss how you can route records to different tables by providing the
appropriate routing information to Firehose in such scenarios.

Provide routing information to Firehose with JSONQuery expression

The simplest and most cost effective way to provide record routing information to Firehose is by
providing a JSONQuery expression. With this approach, you provide JSONQuery expressions for
three parameters – Database Name, Table Name, and (optionally) Operation. Firehose uses the
expression that you provide to extract information from your incoming stream records to route the
records.

The Database Name parameter specifies the name of the destination database. The Table Name
parameter specifies the name of the destination table. Operation is an optional parameter that
indicates whether to insert the incoming stream record as a new record into the destination table,
or to modify or delete an existing record in the destination table. The Operation field must have
one of the following values – insert, update, or delete.

For each of these three parameters, you can either provide a static value or a dynamic expression
where the value is retrieved from the incoming record. For example, if you want to deliver all
incoming stream records to a single database named IoTevents, the Database Name would have
a static value of “IoTevents”. If the destination table name must be obtained from a field in the
incoming record, the Table Name is a dynamic expression that specifies the field in the incoming
record from which the destination table name needs to be retrieved.

In the following example, we use a static value for Database Name, a dynamic value for Table
Name, and a static value for operation. Note that specifying the Operation is optional. If no
operation is specified, Firehose inserts the incoming records into the destination table as new
records by default.

Database Name : "IoTevents"
Table Name : .deviceId
Operation : "insert"

If the deviceId field is nested within the JSON record, we specify Table Name with the nested
field information as .event.deviceId.

Provide routing information to Firehose with JSONQuery expression 154

Amazon Data Firehose Developer Guide

Note

• When you specify the operation as update or delete, you must either specify unique
keys for the destination table when you set up your Firehose stream, or set identifier-
field-ids in Iceberg when you run create table or alter table operations in Iceberg. If you
fail to specify this, then Firehose throws an error and delivers data to an S3 error bucket.

• The Database Name and Table Name values must exactly match with your destination
database and table names. If they do not match, then Firehose throws an error and
delivers data to an S3 error bucket.

Provide routing information using an AWS Lambda function

There might be scenarios where you have complex rules that determine how to route incoming
records to a destination table. For example, you might have a rule that defined if a field contains
the value A, B, or F, that should be routed to a destination table named TableX or you might
want to augment the incoming stream record by adding additional attributes. For example, if a
record contains a field device_id as 1, you might want to add another field that device_type
as “modem“, and write the additional field to the destination table column. In such cases, you can
transform the source stream by using an AWS Lambda function in Firehose and provide routing
information as part of the output of the Lambda transformation function. To understand how you
can transform the source stream by using an AWS Lambda function in Firehose, see Transform
source data in Amazon Data Firehose.

When you use Lambda for transformation of a source stream in Firehose, the output must contain
recordId, result, and data or KafkaRecordValue parameters. The parameter recordId
contains the input stream record, result indicates whether the transformation was successful,
and data contains the Base64-encoded transformed output of your Lambda function. For more
information, see ???.

{
 "recordId": "49655962066601463032522589543535113056108699331451682818000000",
 "result": "Ok",
 "data": "1IiwiI6ICJmYWxsIiwgImdgU21IiwiI6ICJmYWxsIiwg==tcHV0ZXIgU2NpZW5jZSIsICJzZW1"
}

Provide routing information using an AWS Lambda function 155

https://iceberg.apache.org/spec/#identifier-field-ids
https://iceberg.apache.org/spec/#identifier-field-ids
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#create-table
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#alter-table-set-identifier-fields

Amazon Data Firehose Developer Guide

To specify routing information to Firehose on how to route the stream record to a destination table
as part of your Lambda function, the output of your Lambda function must contain an additional
section for metadata. The following example shows how the metadata section is added to the
Lambda output for a Firehose stream that uses Kinesis Data Streams as a data source to instruct
Firehose that it must insert the record as a new record into table named Device1234 of the
database IoTevents.

 {
"recordId": "49655962066601463032522589543535113056108699331451682818000000",
 "result": "Ok",
 "data":
 "1IiwiI6ICJmYWxsIiwgImdgU21IiwiI6ICJmYWxsIiwg==tcHV0ZXIgU2NpZW5jZSIsICJzZW1",

 "metadata":{
"otfMetadata":{
 "destinationTableName":"Device1234",
 "destinationDatabaseName":"IoTevents",
 "operation":"insert"
 }
 }
 }

Similarly, the following example shows how you can add the metadata section to the Lambda
output for a Firehose that uses Amazon Managed Streaming for Apache Kafka as a data source to
instruct Firehose that it must insert the record as a new record into a table named Device1234 in
the database IoTevents.

{
"recordId": "49655962066601463032522589543535113056108699331451682818000000",
 "result": "Ok",
 "kafkaRecordValue":
 "1IiwiI6ICJmYWxsIiwgImdgU21IiwiI6ICJmYWxsIiwg==tcHV0ZXIgU2NpZW5jZSIsICJzZW1",

 "metadata":{
"otfMetadata":{
 "destinationTableName":"Device1234",
 "destinationDatabaseName":"IoTevents",
 "operation":"insert"
 }
 }
 }

Provide routing information using an AWS Lambda function 156

Amazon Data Firehose Developer Guide

For this example,

• destinationDatabaseName refers to the name of the target database and is a required field.

• destinationTableName refers to the name of the target table and is a required field.

• operation is an optional field with possible values as insert, update, and delete. If you do
not specify any values, the default operation is insert.

Note

• When you specify the operation as update or delete, you must either specify unique
keys for the destination table when you set up your Firehose stream, or set identifier-
field-ids in Iceberg when you run create table or alter table operations in Iceberg. If you
fail to specify this, then Firehose throws an error and delivers data to an S3 error bucket.

• The Database Name and Table Name values must exactly match with your destination
database and table names. If they do not match, then Firehose throws an error and
delivers data to an S3 error bucket.

• When your Firehose stream has both a Lambda transformation function and a
JSONQuery expression, Firehose first checks for the metadata field in Lambda output to
determine how to route the record to the appropriate destination table, and then look at
the output of your JSONQuery expression for missing fields.

If the Lambda or JSONQuery expression don't provide the required routing information,
then Firehose assumes this as a single table scenario and looks for single table
information in the unique keys configuration.

For more information, see the Route incoming records to a single Iceberg table. If
Firehose fails to determine routing information and match the record to a specified
destination table, it delivers the data to your specified S3 error bucket.

Sample Lambda function

This Lambda function is a sample Python code that parses the incoming stream records and adds
required fields to specify how the data should be written to specific tables. You can use this sample
code to add the metadata section for routing information.

import json

Provide routing information using an AWS Lambda function 157

https://iceberg.apache.org/spec/#identifier-field-ids
https://iceberg.apache.org/spec/#identifier-field-ids
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#create-table
https://iceberg.apache.org/docs/1.5.1/spark-ddl/#alter-table-set-identifier-fields

Amazon Data Firehose Developer Guide

import base64

def lambda_handler(firehose_records_input, context):
 print("Received records for processing from DeliveryStream: " +
 firehose_records_input['deliveryStreamArn'])

 firehose_records_output = {}
 firehose_records_output['records'] = []

 for firehose_record_input in firehose_records_input['records']:

 # Get payload from Lambda input, it could be different with different sources
 if 'kafkaRecordValue' in firehose_record_input:
 payload_bytes =
 base64.b64decode(firehose_record_input['kafkaRecordValue']).decode('utf-8')
 else
 payload_bytes =
 base64.b64decode(firehose_record_input['data']).decode('utf-8')

 # perform data processing on customer payload bytes here

 # Create output with proper record ID, output data (may be different with
 different sources), result, and metadata
 firehose_record_output = {}

 if 'kafkaRecordValue' in firehose_record_input:
 firehose_record_output['kafkaRecordValue'] =
 base64.b64encode(payload_bytes.encode('utf-8'))
 else
 firehose_record_output['data'] =
 base64.b64encode(payload_bytes.encode('utf-8'))

 firehose_record_output['recordId'] = firehose_record_input['recordId']
 firehose_record_output['result'] = 'Ok'
 firehose_record_output['metadata'] = {
 'otfMetadata': {
 'destinationDatabaseName': 'your_destination_database',
 'destinationTableName': 'your_destination_table',
 'operation': 'insert'
 }
 }
 firehose_records_output['records'].append(firehose_record_output)

Provide routing information using an AWS Lambda function 158

Amazon Data Firehose Developer Guide

 return firehose_records_output

Monitor metrics

For data delivery to Apache Iceberg Tables, Firehose emits the following CloudWatch metrics at a
stream level.

Metric Description

DeliveryToIceberg.Bytes The number of bytes delivered to Apache Iceberg Tables
over the specified time period.

Units: Bytes

DeliveryToIceberg.
IncomingRowCount

Number of records that Firehose attempts to deliver to
Apache Iceberg Tables.

Units: Count

DeliveryToIceberg.
SuccessfulRowCount

Number of successful rows delivered to Apache Iceberg
Tables.

Units: Count

DeliveryToIceberg.
FailedRowCount

Number of failed rows delivered to S3 backup bucket.

Units: Count

DeliveryToIceberg.
DataFreshness

The age (from getting into Firehose to now) of the
earliest record in Firehose. Any record earlier than this
age has been delivered to Apache Iceberg Tables.

Units: Seconds

DeliveryToIceberg.Success Sum of successful commits to Apache Iceberg Tables.

JQProcessing.Duration The amount of time it took to run the JQ expression.

Units: Milliseconds

Monitor metrics 159

Amazon Data Firehose Developer Guide

Understand supported data types

Firehose supports all the primitive and complex data types that Apache Iceberg supports. For more
information, see Schemas and Data Types. When sending binary data as a string, you must use
Firehose supported encoding types - Basic Base64, MIME Base64, URL and filename safe Base64,
and Hex. For Timestamp data types, you must always send in microseconds.

Data types examples

The following section shows examples of different data types.

MapType

{
 "destination_column_0":
 {"WP5o0JOkuIQcDPcsvpJJygF1xzaOSq0wUlgTwuIeCEzgVneGxA":"PO3ReF3auyDqbfonx9Cd8NTmcQnqnw7JuZOCWwI1jqgQKpsdMASWuU9rzb98Nm0WQe6l7i8TTEgH5gpqohIaQ58xwquYYho3ephkXfCgLryWdAhcyNcKf5SR8Xc5iv1SSsucXDqSoEceYiHTN6","eJbYbzmmasbNjun5WQhDgW81WJBQJWY0XwcNmgUn2qj2f7X5VWVAwnH1u3DzuglPicBOKLAWesjLXciJJYMn3E3vE7FgUZCAeo6Haf7":"XLnTauZzUiesOCv1kcI8QgO3eH0zEkiJiaExywuNoVk1feh4FpTL","vgHzvjlfqXG6gVnvKqMu18YiOvEqixeoK3DhcGafkkVfE9MVSDHBhc9L2OsF5dIasTWhKYYQnZrzxro3Fc1bzgKm1UHiYRrtg5eKHTJUW4fC8qR65Y73HynS0hRNfdD0miQi4jaENTrnona348iIjiVL9mvYR":"VsVIcn1RAEWYyIRH2iOPzIBzZBWJYjjcPGOlRt6PfE0Gt97dfkOZ7MpNNXTtJ1g3AUHoAvpo6asfWDKELcHmZEgu5eo8fga","8UjOp19MIgfe1DMzIWbE44":"CtenADor4MMiZfRq6eN0LLKEcsn5qVHLsQrBsHjqocb1dIUZ8fk1Bo2YIzT0rcPxx0LAbzOHx","8FSZWB13VL9csnpX7RAcajIlUcnO7vH8qjkaVMYFD3uS0QlJ5gQL63DLih7Mh6TwVOhWbrTAEK4zffn5iyWKhYqslG79UiRn9A35zdYeLt6rJUS71Yu9HWybxhoYBRwX0wCd9YjJAiTKxNunvKTEyqgEM2BcavcAT5RENSa819Y3nDGhdekmdhkUP1J6tcsEGio3":"liMdGIy12FC5iGlETX1pkfQZr6BrTAI7nvzlQUd7xELs2JVSXUGG9OmY3EFPvQ8IS7h4vyJikvTgczun6JMrq6Cw6Xs083FUh9LQpXfQCBXafhBCPIWwLtRX5ilMf8ZJ6ndJTDiFCrhXuFPC","2puYqZivt4CrkeLsmcuPw38oUkEUnpXrXfK1e9WafRJqN3pR1rakR2RFq5jyQcYkQXnOjdQi2cxthoSnA":"icdnS1DMLt950mwURyUR8tENXk3vJgGmTabJHmIuRSyoWHY7LbyGnRN8U1lQyOTRPCxkE7zKrSFOe13Jo1dlWDClVrxUUrrYb2Hc61zmbCagXcfp5FQhqDL5gMeK4wW32g","ZtTLkLZBcUdem2bBu4F7ngM3JxG8CLyRwdVxXMhPB0zeBEnGVRxUqjmwZIZ4H3e":"rrF4n8bPvzkUhslj2kGDodvpoGGswlOhDaCnLGW0cq3FNbDFj1PAn95VHiUul5d8tmt8kmA0Rgr24dT70vPfERpVHPlXcyXTg8o","0lipyfJwb45pGxet5rggbUoWByZdmRvuSJyPGdhZz2IjPNr5pkGUuc0beVwiwgIu2dNXRJFT25xz8dYP67fasdzkNsxqfWFmOjZvW5b":"V4qDnpR9ZgYflvGnIiScYnzsrDW797UGDMZjEg0nIrkmRrnc6FYXPlm0aiUBXuK6ZGNsfRmEl0kw6GHuUtYMUCcWIfwUo5wK8n0s3KTzMGOPsjl5MTaA8HWqUIMc3q3JlIZOXAFAENj7EtduzPpHBKRHWDbtmjjGtSsx8GNmZ108Gv43J92Q5G","qbgztJdIywmuKauxGnmRBSKMVmtyreab6dITzul47t2QiIQ5fEXQ4J5OonT5":"6JB70Wd1rwxBQR36b5MqMgXHr7TYZSLJ9xTIHFCSkknxcuvmbot6xEkTv9ijtoLEQrxr9fwI8wsMCXsSYV7j3Fs4VPH8loyZMtYYbtUbuljLHjwJye1hlMeiLy","jwy5FY9Mi0vAo5w6l7tRM2Q4sKGaT9s":"5m4glPW6k7fm3zPYT2hVR1MfraLG8TEGPCUemRqC36KHbLoNCxLjGfaYLAI2CeE4IuMa1WIlrsXvPgVIvH7LSQED7uQfedVN4KZavMQycBqJrYkZpHdMO9JaMSo5N4ncNuvs0pgLLSketqdW8qUOjZvdnMTLcZpJFioQGVGL7HCWvWm4qxhKjHOxi0zua2hROLnMkK","HNGNf2jAaR6A07QHxF6KY0Ce4wITpCKQNTlkHWDqAm48ocUjWaTRmc8jBGN0Gs8iZalJiTLzJrquHVThx":"QneTrdTPwtT3sEuRc1KdYZNsfrDTBeKX3tPNovIB7ZTuQGbgtf70mIvGnt8vmdDyDKleDdF9WjESkAsz42PpJHpqYtwqwJbUbB47VfSMF4sNJRPo0eaZceqzDyHHNu6xJs","oKEKH0tyt2o42iXQffNvKrhkZHS6bqcqGIkSCMxrTbgRWl0sTiCpPzfkoY1XwMBRxAYuYRimZ3W5nM58clYiOxL2oVYdA2":"9FsQsrpJKN","bekToN5OdByhB9DRS7wb5daFxDI6KGBHSecKzl6n5UEjxaAp4dO0KTXlzzflR7YRrPDrR3pQAiy7Y1tYry":"dcwHnwApWtoZWtwzI1Syv6ak0XZPMmk7Tyq1pi3qB0axsPyRJztmjYslzW07muyAMiRIzX2SfMulhTAtjoHahwb6xLLdTrL9FfQvR"},
 "destination_column_1": "{\"{\\\"destination_nested_column_0\\\": \
\\"18:56:14.974\\\", \\\"destination_nested_column_1\\\": 241.86246}\":
\"M07kAvYdHvBh61F7RzfxtEd39YQI33LnM2NbGS67DOFFsRUyUUujKT5VnK7Wtfz1mHNeIix6FAY9cYpwTdedgr9XnFwG0BHMO51LZPYXerDqAUmqhldyKUvxy1KMQkU
\",\"{\\\"destination_nested_column_0\\\": \\\"18:56:14.974\
\\", \\\"destination_nested_column_1\\\": 562.56384}\":
\"9GlxhDCt95LxBo51HybBZihqOqf6EU8jrDu7NMpxtGB2dY6q6kXpvxIrFuMdqHCJKIZIcDikwggLniUm8kgE4d
\",\"{\\\"destination_nested_column_0\\\": \\\"18:56:14.974\
\\", \\\"destination_nested_column_1\\\": 496.03268}\":
\"keTJZYLNvLRB50DMKzEI6M0AM4mueyNnA1m2YVnYdDwyxUpPqkb72Q6LiX0B9s8gCjZ6trW6C1PFk9KNBIpxYsj5Tc5Xsl13go3qLqFRwsFiW7peHp6xBJ7NcJm4RxSbIDEnTr1FLpmnKC18VZeY
\",\"{\\\"destination_nested_column_0\\\": \\\"18:56:14.974\\\", \\
\"destination_nested_column_1\\\": 559.0878}\":
\"mG0ZET84BUF28E312UCIWgmypyQFSUODH9NAMAnF3LJEutbooZWcBt97PP5AHaopNvC8pQZ4mGXB9hmVmjUNmuj5QanyxXrKtCU8uivE3R8jPx3jur0iepx9ckgbHF7J13lDCXW92a
\",\"{\\\"destination_nested_column_0\\\": \\\"18:56:14.974\
\\", \\\"destination_nested_column_1\\\": 106.845245}\":
\"aidoVYrzu8gcLRkVVUyTKCN9gqTUFYi8uJQsrXEFEYl1f9ool7JhAtg9QKG5BBu67Ngb95ENsNKQyCHNImSu5x4hMnmHUB6qRkfOsk9BzTqkM
\"}"
}

DecimalType

{
 "destination_column_0": 9455262425851.1342772,
 "destination_column_1": "9455262425851.1342772",
 "destination_column_2": 9455262425852
}

Understand supported data types 160

https://iceberg.apache.org/spec/#schemas-and-data-types

Amazon Data Firehose Developer Guide

BinaryType (base64-default, base64-mime, base64-url-safe, hex)

{
 "destination_column_0": "AsYhnHD\/Ra54hITl1daNV9glOjtWPEfopH
+PjgUKHYB6K7UcYi4K19b80wD4J\/93x5tyh+0y
+k5cMljVRlmfIkIuLxl9ERBiPPLhf4+yoJ2k70VavPnYWmNLs1hLDHlfeEMIfVhrqOGzJMoA
+CBAWXfIuiG420JSQP5iAx5xFG\/
mOfkM5zYothje8OGXltdthcCL6WYBiP0SlwXcE0uMeRfwclAc9fTOBz6RzdJlHhUDjoAXg
+4cvly27F82XpuGMNwpUj98AOrgbh2MoU9yvsM9ZrjD0eGVgOZP8Ky7Za4oE\/oK8j
+qABF6XV712iA6pVtTNJFvX6Ey3ssNYvno+LYF5ZsySs2rB5AbVM73RfOPqdS\/c\/
r3MEqoEqt+nPx6eGam4WSA+0swztt7aLdrlX6yK7xJeIJ0rTlIDBo0ZUaw011ykY
\/8Bvy+4byoPlmr4Z5yhN1z3ZTOkx7eDR6xMv+vDVsDBtItVazDwHgDy41r
\/hQNeNedPKrozc8TY9k7wZre\/6V2lCa3BmT8Uu9b9ydjR9z+fCSdG
+VRv35nz5kdqdKy8YIrynYs4eOcjh8jH3UwVYrYQcnWkBAfF7Xk9CoPVnL3ciHZtyiZOaTGIj9rO0xX\/
W5dGe9\/4YChs6LbD584kxLTxvHgSl4vadaTGNKci3SvNmZNsz8ducxtNXF\/Tv2DUub465hzgpaLPur3+MB
+kfdN2YXUfqb
+xJAgxThWfUe151nrH0EPow9lgSlp21rUBGznJAvPRl1ExGIAuc7JYAoUrJUkx5Hfl6PekPDhqt7+yJwCB8qxhTTryxo
+bjtai4ndRCGcuCaxT8KkOcXsS37urd3YGSDMinZdMNVc646s25415qK6nBRlqqAY8+EYmcUIVB9XcNdke4zoUfhVQoruwidzDU
\/kFafoulo5DEoMOyaH1N2HCSxG5tZXNQocSZPaY8efZYMCpmDXsPAzkmgSkYRDSu\/r3wUqROa2tGK5\/
pQY24v+Jq0U\/jQ99GShlU283nZ85ot2ocbtMAgD\/WsrSEh6lNt9RaI3HfA7\/HcH\/
fgr9jsTtxDgZhabTBwwDwX0zjWGx1bCuTLKBN7byxg9ZvAVgqwPS4HERLer5T5UkKf74zn9Eq3HYH1Q5JpyDUx
+im7mte1sprf1+A24kksVU\/MD9aP9N8\/QDsQ13gkhOn5KwFMz3BC2Vw5gL
+gGNHFKDRL6wGIfhuYcx9LucolZ1yNy9Gbb3ioWSSufyFpyXqtndDLPI5QS1SJpJm2KDyqcH1SmRLIhd9MNRUC73EAEm
+NO5wxPzBRSjhCHZpf8SrYITWJl7K3XzGOfPFh2NgES3jMP9cvSXO6yyICcep2HBYGbFflni89+Rw==",
 "destination_column_1": "AsYhnHD\/Ra54hITl1daNV9glOjtWPEfopH
+PjgUKHYB6K7UcYi4K19b80wD4J\/93x5tyh+0y+k5c\r
\nMljVRlmfIkIuLxl9ERBiPPLhf4+yoJ2k70VavPnYWmNLs1hLDHlfeEMIfVhrqOGzJMoA+CBAWXfI\r
\nuiG420JSQP5iAx5xFG\/mOfkM5zYothje8OGXltdthcCL6WYBiP0SlwXcE0uMeRfwclAc9fTOBz6R\r
\nzdJlHhUDjoAXg+4cvly27F82XpuGMNwpUj98AOrgbh2MoU9yvsM9ZrjD0eGVgOZP8Ky7Za4oE\/oK\r
\n8j+qABF6XV712iA6pVtTNJFvX6Ey3ssNYvno+LYF5ZsySs2rB5AbVM73RfOPqdS\/c\/r3MEqoEqt+
\r\nnPx6eGam4WSA+0swztt7aLdrlX6yK7xJeIJ0rTlIDBo0ZUaw011ykY\/8Bvy+4byoPlmr4Z5yhN1z
\r\n3ZTOkx7eDR6xMv+vDVsDBtItVazDwHgDy41r\/hQNeNedPKrozc8TY9k7wZre\/6V2lCa3BmT8Uu9b
\r\n9ydjR9z+fCSdG+VRv35nz5kdqdKy8YIrynYs4eOcjh8jH3UwVYrYQcnWkBAfF7Xk9CoPVnL3ciHZ
\r\ntyiZOaTGIj9rO0xX\/W5dGe9\/4YChs6LbD584kxLTxvHgSl4vadaTGNKci3SvNmZNsz8ducxtNXF
\/\r\nTv2DUub465hzgpaLPur3+MB+kfdN2YXUfqb+xJAgxThWfUe151nrH0EPow9lgSlp21rUBGznJAvP
\r\nRl1ExGIAuc7JYAoUrJUkx5Hfl6PekPDhqt7+yJwCB8qxhTTryxo+bjtai4ndRCGcuCaxT8KkOcXs\r
\nS37urd3YGSDMinZdMNVc646s25415qK6nBRlqqAY8+EYmcUIVB9XcNdke4zoUfhVQoruwidzDU\/k\r
\nFafoulo5DEoMOyaH1N2HCSxG5tZXNQocSZPaY8efZYMCpmDXsPAzkmgSkYRDSu\/r3wUqROa2tGK5\r
\n\/pQY24v+Jq0U\/jQ99GShlU283nZ85ot2ocbtMAgD\/WsrSEh6lNt9RaI3HfA7\/HcH\/fgr9jsTtxDg
\r\nZhabTBwwDwX0zjWGx1bCuTLKBN7byxg9ZvAVgqwPS4HERLer5T5UkKf74zn9Eq3HYH1Q5JpyDUx+\r
\nim7mte1sprf1+A24kksVU\/MD9aP9N8\/QDsQ13gkhOn5KwFMz3BC2Vw5gL+gGNHFKDRL6wGIfhuYc
\r\nx9LucolZ1yNy9Gbb3ioWSSufyFpyXqtndDLPI5QS1SJpJm2KDyqcH1SmRLIhd9MNRUC73EAEm+NO\r
\n5wxPzBRSjhCHZpf8SrYITWJl7K3XzGOfPFh2NgES3jMP9cvSXO6yyICcep2HBYGbFflni89+Rw==",

Data types examples 161

Amazon Data Firehose Developer Guide

 "destination_column_2": "AsYhnHD_Ra54hITl1daNV9glOjtWPEfopH-
PjgUKHYB6K7UcYi4K19b80wD4J_93x5tyh-0y-k5cMljVRlmfIkIuLxl9ERBiPPLhf4-
yoJ2k70VavPnYWmNLs1hLDHlfeEMIfVhrqOGzJMoA-
CBAWXfIuiG420JSQP5iAx5xFG_mOfkM5zYothje8OGXltdthcCL6WYBiP0SlwXcE0uMeRfwclAc9fTOBz6RzdJlHhUDjoAXg-4cvly27F82XpuGMNwpUj98AOrgbh2MoU9yvsM9ZrjD0eGVgOZP8Ky7Za4oE_oK8j-
qABF6XV712iA6pVtTNJFvX6Ey3ssNYvno-LYF5ZsySs2rB5AbVM73RfOPqdS_c_r3MEqoEqt-
nPx6eGam4WSA-0swztt7aLdrlX6yK7xJeIJ0rTlIDBo0ZUaw011ykY_8Bvy-4byoPlmr4Z5yhN1z3ZTOkx7eDR6xMv-
vDVsDBtItVazDwHgDy41r_hQNeNedPKrozc8TY9k7wZre_6V2lCa3BmT8Uu9b9ydjR9z-fCSdG-
VRv35nz5kdqdKy8YIrynYs4eOcjh8jH3UwVYrYQcnWkBAfF7Xk9CoPVnL3ciHZtyiZOaTGIj9rO0xX_W5dGe9_4YChs6LbD584kxLTxvHgSl4vadaTGNKci3SvNmZNsz8ducxtNXF_Tv2DUub465hzgpaLPur3-
MB-kfdN2YXUfqb-
xJAgxThWfUe151nrH0EPow9lgSlp21rUBGznJAvPRl1ExGIAuc7JYAoUrJUkx5Hfl6PekPDhqt7-
yJwCB8qxhTTryxo-bjtai4ndRCGcuCaxT8KkOcXsS37urd3YGSDMinZdMNVc646s25415qK6nBRlqqAY8-
EYmcUIVB9XcNdke4zoUfhVQoruwidzDU_kFafoulo5DEoMOyaH1N2HCSxG5tZXNQocSZPaY8efZYMCpmDXsPAzkmgSkYRDSu_r3wUqROa2tGK5_pQY24v-
Jq0U_jQ99GShlU283nZ85ot2ocbtMAgD_WsrSEh6lNt9RaI3HfA7_HcH_fgr9jsTtxDgZhabTBwwDwX0zjWGx1bCuTLKBN7byxg9ZvAVgqwPS4HERLer5T5UkKf74zn9Eq3HYH1Q5JpyDUx-
im7mte1sprf1-A24kksVU_MD9aP9N8_QDsQ13gkhOn5KwFMz3BC2Vw5gL-
gGNHFKDRL6wGIfhuYcx9LucolZ1yNy9Gbb3ioWSSufyFpyXqtndDLPI5QS1SJpJm2KDyqcH1SmRLIhd9MNRUC73EAEm-
NO5wxPzBRSjhCHZpf8SrYITWJl7K3XzGOfPFh2NgES3jMP9cvSXO6yyICcep2HBYGbFflni89-Rw==",
 "destination_column_3":
 "02c6219c70ff45ae788484e5d5d68d57d8253a3b563c47e8a47f8f8e050a1d807a2bb51c622e0ad7d6fcd300f827ff77c79b7287ed32fa4e5c3258d546599f22422e2f197d1110623cf2e17f8fb2a09da4ef455abcf9d85a634bb3584b0c795f7843087d586ba8e1b324ca00f820405977c8ba21b8db425240fe62031e71146fe639f90ce73628b618def0e19796d76d85c08be9660188fd129705dc134b8c7917f072501cf5f4ce073e91cdd2651e15038e801783ee1cbe5cb6ec5f365e9b8630dc29523f7c00eae06e1d8ca14f72bec33d66b8c3d1e19580e64ff0acbb65ae2813fa0af23faa00117a5d5ef5da203aa55b5334916f5fa132decb0d62f9e8f8b605e59b324acdab07901b54cef745f38fa9d4bf73faf7304aa812ab7e9cfc7a7866a6e16480fb4b30cedb7b68b76b957eb22bbc49788274ad39480c1a346546b0d35d72918ffc06fcbee1bca83e59abe19e7284dd73dd94ce931ede0d1eb132ffaf0d5b0306d22d55acc3c07803cb8d6bfe140d78d79d3caae8cdcf1363d93bc19adeffa5769426b70664fc52ef5bf7276347dcfe7c249d1be551bf7e67cf991da9d2b2f1822bca762ce1e39c8e1f231f7530558ad841c9d690101f17b5e4f42a0f5672f77221d9b7289939a4c6223f6b3b4c57fd6e5d19ef7fe180a1b3a2db0f9f389312d3c6f1e04a5e2f69d69318d29c8b74af36664db33f1db9cc6d35717f4efd8352e6f8eb987382968b3eeaf7f8c07e91f74dd985d47ea6fec49020c538567d47b5e759eb1f410fa30f65812969db5ad4046ce7240bcf465d44c46200b9cec9600a14ac9524c791df97a3de90f0e1aadefec89c0207cab18534ebcb1a3e6e3b5a8b89dd44219cb826b14fc2a439c5ec4b7eeeadddd81920cc8a765d30d55ceb8eacdb9e35e6a2ba9c1465aaa018f3e11899c508541f5770d7647b8ce851f855428aeec227730d4fe415a7e8ba5a390c4a0c3b2687d4dd87092c46e6d657350a1c4993da63c79f658302a660d7b0f0339268129184434aefebdf052a44e6b6b462b9fe9418db8bfe26ad14fe343df464a1954dbcde767ce68b76a1c6ed300803fd6b2b48487a94db7d45a2371df03bfc7707fdf82bf63b13b710e066169b4c1c300f05f4ce3586c756c2b932ca04dedbcb183d66f01582ac0f4b81c444b7abe53e5490a7fbe339fd12adc7607d50e49a720d4c7e8a6ee6b5ed6ca6b7f5f80db8924b1553f303f5a3fd37cfd00ec435de09213a7e4ac05333dc10b6570e602fe80634714a0d12fac0621f86e61cc7d2ee728959d72372f466dbde2a16492b9fc85a725eab677432cf239412d52269266d8a0f2a9c1f54a644b22177d30d4540bbdc40049be34ee70c4fcc14528e10876697fc4ab6084d6265ecadd7cc639f3c5876360112de330ff5cbd25ceeb2c8809c7a9d8705819b15f9678bcf7e47"
}

TimeType (Epoch in Microseconds, LocalTime Java Object)

{
 "destination_column_0": 68175096000,
 "destination_column_1": "18:56:15.096"
}

TimestampType.withZone (Epoch in Microseconds, OffsetDateTime Java Object, LocalDateTime
Java Object)

{
 "destination_column_0": 1725476175099000,
 "destination_column_1": "2024-09-04T18:56:15.099Z",
 "destination_column_2": "2024-09-04T18:56:15.099"
}

DoubleType

{
 "destination_column_0": 9.18477568715142,
 "destination_column_1": "9.18477568715142"
}

Data types examples 162

Amazon Data Firehose Developer Guide

BooleanType

{
 "destination_column_0": true,
 "destination_column_1": "false",
 "destination_column_2": 1,
 "destination_column_3": 0
}

FloatType

{
 "destination_column_0": 0.6242226,
 "destination_column_1": "0.6242226"
}

IntegerType

{
 "destination_column_0": 7,
 "destination_column_1": "7"
}

TimestampType.withoutZone (Epoch in Microseconds, LocalDateTime Java Object,
OffsetDateTime Java Object, ZonedDateTime Java Object)

{
 "destination_column_0": 1725476175114000,
 "destination_column_1": "2024-09-04T18:56:15.114",
 "destination_column_2": "2024-09-04T18:56:15.114Z",
 "destination_column_3": "2024-09-04T18:56:15.114-07:00"
}

DateType

{
 "destination_column_0": 19970,
 "destination_column_1": "2024-09-04"
}

LongType

Data types examples 163

Amazon Data Firehose Developer Guide

{
 "destination_column_0": 8,
 "destination_column_1": "8"
}

UUIDType (UUID Java Object)

{
 "destination_column_0": "21c5521c-a6d4-48d4-b2c8-7f6d842f72c3"
}

ListType

{
 "destination_column_0":
 ["s1FSrgb0lGDxfn2iYT0EtlP47aHSjwmLZgrdr1JqRs0dmbeCcQoaLr4Xhi2KIVvmus9ppFdpWIcOHnJ0omhAPhXH0ynsaicCqnpQ8VAYp4bBPDgangwz9KOz60d0qSqCFxwEhoXjV4AouN5mwW","VUYtsT1pcw8q5WBxOiL47IZqea4fFloZwV7iJanDrvqK6AGa1yBuQyqd6R0axrcz8wcGBP","blsmImCYglNKNBcThVuKGeLOmKJdX19pRMR08ayc1EXN2rP7dIRfbhkk76XgAR3IsIwpB0jiQG8PW40PSlzn4sxUMN5wwQgyxmkZbk3e0dW0uqwVIm7KFkOPEHNmqgw01cT9KKMBwXkOGUmtX1","1234567890abcdef0","2234567890abcdef0"],
 "destination_column_1": "[{\"destination_nested_column_0\":\"bb00f8e6-
db82-4241-a5c5-0d9c0d2f71a4\",\"destination_nested_column_1\":907.35345},
{\"destination_nested_column_0\":\"2c77b702-d405-4fe1-beee-fb541d7ab833\",
\"destination_nested_column_1\":544.0026},{\"destination_nested_column_0\":
\"68389200-d6b1-413d-bcd9-fdb931708395\",\"destination_nested_column_1\":153.683},
{\"destination_nested_column_0\":\"bc31cbaa-39cd-4e2f-b357-9ea9ce75532b\",
\"destination_nested_column_1\":977.5165},{\"destination_nested_column_0\":
\"b7d627f9-0d5b-41b7-903a-525488259fba\",\"destination_nested_column_1\":434.17215},
{\"destination_nested_column_0\":\"06b6ec1e-1952-4582-b285-46aaf40064b8\",
\"destination_nested_column_1\":580.33124},{\"destination_nested_column_0\":
\"f04b3bbf-61ad-4c5c-8740-6f666f57c431\",\"destination_nested_column_1\":550.75793}]"
}

Resources

Use the following resources to learn more:

• Stream real-time data into Apache Iceberg tables in Amazon S3 using Amazon Data Firehose

• Streamline AWS WAF log analysis with Apache Iceberg and Amazon Data Firehose

• Build a data lake for streaming data with Amazon S3 Tables and Amazon Data Firehose

Resources 164

https://aws.amazon.com/blogs/big-data/stream-real-time-data-into-apache-iceberg-tables-in-amazon-s3-using-amazon-data-firehose/
https://aws.amazon.com/blogs/big-data/streamline-aws-waf-log-analysis-with-apache-iceberg-and-amazon-data-firehose/
https://aws.amazon.com/blogs/storage/build-a-data-lake-for-streaming-data-with-amazon-s3-tables-and-amazon-data-firehose/

Amazon Data Firehose Developer Guide

Replicate database changes to Apache Iceberg Tables
with Amazon Data Firehose

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Organizations use relational databases to store and retrieve transactional data that are optimized
to interact very quickly with one or a few rows of data at a time. They are not optimized for
querying large sets of aggregated data. Organizations move transactional data from relational
databases to analytical data stores such as data lakes, data warehouses, and other tools for
analytics and machine learning use cases. To keep analytical data stores in sync with relational
databases, a design pattern called change data capture (CDC) is used that enables capturing all
changes to databases in real time. When data is changed through INSERT, UPDATE, or DELETE
in a source database, those CDC changes must be continuously streamed without impacting the
performance of databases.

Firehose provides an effective and easy-to-use end-to-end solution to replicate changes from
MySQL and PostgreSQL databases into Apache Iceberg Tables. With this feature, Firehose enables
you to select specific databases, tables, and columns that you want Firehose to capture in CDC
events. If you don’t have Iceberg Tables already, you can opt in for Firehose to create Iceberg
Tables. Firehose creates databases and tables using the same schema as in your relational database
tables. Once the stream is created, Firehose takes an initial copy of the data in the tables and writes
to Apache Iceberg Tables. When the initial copy is complete, Firehose starts nearly continuous
capture of the real time CDC changes in your databases and replicates them to Apache Iceberg
Tables. If you opt in for schema evolution, Firehose evolves your Iceberg Table schema based on
your schema changes in your relational databases.

Firehose can also replicate changes from MySQL and PostgreSQL databases to Amazon S3 Tables.
Amazon S3 Tables provide storage that is optimized for large-scale analytics workloads, with
features that continuously improve query performance and reduce storage costs for tabular
data. With built-in support for Apache Iceberg, you can query tabular data in Amazon S3 with

165

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

popular query engines including Amazon Athena, Amazon Redshift, and Apache Spark. For more
information on Amazon S3 Tables, see Amazon S3 Tables.

For Amazon S3 Tables, Firehose doesn't support the automatic creation of tables. You must create
S3 Tables before creating a Firehose stream.

Consideration and limitations

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Firehose support for database as a source for Apache Iceberg Tables has the following
considerations and limitations:

• Firehose supports RDS and Aurora databases and databases running on Amazon EC2 instances.

• Firehose supports MySQL version 8.0.x and 8.2 and PostgreSQL versions 12, 13, 14, 15, and 16.

• For MySQL and PostgreSQL, Firehose supports Standalone, Primary and replica, High available
clusters, and Multi-primary topologies. Firehose works with only a primary server endpoint.

• Firehose supports databases that are within Virtual Private Cloud (VPC).

• As a part of schema evolution, Firehose supports new column addition changes.

• During preview, Firehose supports a maximum of 20 MBPS per Firehose stream.

• Firehose supports a maximum row size of 10 MB.

• Firehose supports in-order processing of CDC events per primary key basis.

• Firehose provides exactly once replication of CDC events into Apache Iceberg Tables.

• For Amazon S3 Tables, Firehose doesn't support the automatic creation of tables. You must
create S3 Tables before creating a Firehose stream.

Consideration and limitations 166

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables.html
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

Prerequisites to use database as a source

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Before you begin, complete the following prerequisites.

• Source Database configurations – You need the following source database configurations before
you can use the database as a source for your Firehose stream.

• Create snapshot watermark table with right permissions – For the initial copy (snapshot) of
the data in the tables, Firehose uses an incremental copy approach with watermarks to track
the progress. This incremental copy approach helps to resume the copy from where it stopped
and then recapturing the table if there are any interruptions. Firehose uses a watermark
table in your database to store the required watermarks. Firehose needs one watermark
table per Firehose stream. If the table is not already created before Firehose stream creation,
then Firehose creates this table as a part of the stream creation. You must provide the right
permissions for Firehose to create this table.

• Create a database user – Firehose requires a database user account with the right permissions
to make the initial copy of tables, read CDC events from the transaction logs, access watermark
table, and create a watermark table if it's not already created. You will use this database
username and password as part of Firehose credentials to connect to your database during
stream setup.

• Enable transaction logs – The transaction logs record all database changes such as INSERT,
UPDATE, and DELETE in the order it's committed to the database. Firehose reads the
transaction logs and replicates the changes to Apache Iceberg Tables. You must enable the
transaction logs if it's not enabled.

• Add an inbound and outbound rule – To allow private connectivity to databases, you must
add an inbound rule and outbound rule for HTTPS traffic and an inbound rule for database
(MySQL or PostgreSQL) traffic in the security group of your database VPC. For the source
column, use the IPv4 CIDR range of your VPC.

Prerequisites 167

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

To create a watermark table, database user, and to enable transaction logs, follow the steps in
???.

• Enable private connectivity to databases – Firehose supports connecting to databases within
VPC using AWS PrivateLink technology. To enable private connectivity to databases, see Access
Amazon RDS across VPCs using AWS PrivateLink and Network Load Balancer. Here are some
points to note for connecting to databases.

• These steps also apply for databases running on EC2.

• You must increase the timeout of the Lambda function used in this example from default 3
seconds to 5 minutes.

• Before you run the Lambda function to update the primary instance IP address to the
Network Load Balancer, you must create a VPC Endpoint with the AWS service name as
com.amazonaws.us-east-1.elasticloadbalancing within your database VPC, so the
Lambda can communicate with the Elastic Load Balancing service.

• You must allowlist Firehose service principal firehose.amazonaws.com to create AWS
PrivateLink to your VPC. For more information, see Manage permissions. Do not add the ARN
of this service role. Only add firehose.amazonaws.com to the allow principals.

• You must allow your endpoint service to accept connection requests automatically, by ensuring
that you disable the Acceptance Required option through Amazon VPC . This allows Firehose
to create the necessary endpoint connection without any manual intervention. For more
information on how to disable connection request, see Accept or reject connection requests .

• Store credentials in AWS Secrets Manager – Firehose uses AWS Secrets Manager to retrieve
credentials that are used to connect to databases. Add the database user credentials that
you created in the previous prerequisite, as secrets in the AWS Secrets Manager. For more
information, refer to Authenticate with AWS Secrets Manager in Amazon Data Firehose.

• Create an IAM role with required permissions – Firehose needs an IAM role with specific
permissions to access AWS Secrets Manager, AWS Glue tables and write data to Amazon S3.
The same role is used to grant AWS Glue access to Amazon S3 buckets. You need this IAM role
when you create Apache Iceberg Tables and a Firehose. For more information, see Grant Firehose
access to replicate database changes to Apache Iceberg Tables.

• Create Apache Iceberg Tables – Firehose can automatically create Iceberg Tables if you enable
the setting during Firehose stream creation. If you don’t want Firehose to create Iceberg Tables,
then you must create Iceberg Tables with the same name and schema as the source database
tables. For more information on creating Iceberg tables using Glue, refer to Creating Iceberg
Tables. Firehose cannot automatically create Amazon S3 tables.

Prerequisites 168

https://aws.amazon.com/blogs/database/access-amazon-rds-across-vpcs-using-aws-privatelink-and-network-load-balancer/
https://aws.amazon.com/blogs/database/access-amazon-rds-across-vpcs-using-aws-privatelink-and-network-load-balancer/
https://docs.aws.amazon.com/vpc/latest/privatelink/configure-endpoint-service.html#add-remove-permissions
https://docs.aws.amazon.com/vpc/latest/privatelink/configure-endpoint-service.html#accept-reject-connection-requests
https://docs.aws.amazon.com/glue/latest/dg/populate-otf.html#creating-iceberg-tables
https://docs.aws.amazon.com/glue/latest/dg/populate-otf.html#creating-iceberg-tables

Amazon Data Firehose Developer Guide

Note

You must create Apache Iceberg Tables with the following mapping.

• For MySQL source database name maps to AWS Glue Database name and source table
name maps to AWS Glue table name.

• For PostgreSQL, source database name maps to AWS Glue Database and
source schema name and table name maps to AWS Glue Table name in
<SchemaName>_<TableName> format. If you create a table by yourself, the source
and target schemas should exactly match.

Set up the Firehose stream

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

To create a Firehose stream with databases as your source, you must configure the following:

Configure source and destination

To source data from your database, choose the source for your stream. Firehose supports MySQL
and PostgreSQL databases as database sources. Next, choose Apache Iceberg Tables as the
destination and provide a Firehose stream name.

Configure database connectivity

For Firehose to connect to a database instance, it needs a database endpoint, VPC service endpoint,
a port, and a valid database user with the right credentials.

• Database endpoint – Database endpoint of the primary server of your database cluster. For
example, the endpoint would either be self-managed xyz.amazonaws.com or RDS databases
mydb.123456789012.us-east-1.rds.amazonaws.com.

Set up the Firehose stream 169

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

• VPC Service Endpoint name – Firehose supports private connectivity to databases. You
must provide VPC endpoint service name. For example, the service endpoint can be
com.amazonaws.vpce.us-east-1.vpce-svc-XXXXXXXXXXXXXX.

• Port – For port, you must configure 3306 for MySQL databases and 5432 for PostgreSQL
databases.

• SSL Mode – You can choose to either enable or disable the SSL mode. If enabled, Firehose
uses verify_identity for MySQL and verify-full SSL mode for PostgreSQL. The
certificate must be signed by a trusted CA. For more information, see Using SSL/TLS to encrypt
a connection to a DB instance or cluster. Note that for RDS PostgreSQL and Aurora PostgreSQL,
the force_ssl parameter is set to 1, so you must either specify SSL Mode as enabled in
Firehose configuration or you change force_ssl parameter to 0 in the database parameter
group.

• Authenticate with AWS Secrets Manager – Select a secret from AWS Secrets Manager that
contains the credentials for connecting to databases. If you do not have an existing secret, create
one in AWS Secrets Manager. For more information, refer to Authenticate with AWS Secrets
Manager in Amazon Data Firehose.

Configure data capture

If you want Firehose to capture changes from specific databases, tables, and columns, then you can
configure them as a part of Firehose stream creation. You can specify required databases, tables,
and columns by either providing regular expressions to include or exclude them or by explicitly
providing comma separated specific database, table, and column names.

Note

Because in PostgreSQL the schema within each database contains database objects such as
tables and views, the fully qualified name or the regular expression must take schemas into
consideration.
For MySQL, the fully qualified name is <Sampledatabase>.<SampleTable> and for
PostgreSQL the fully qualified name is <SampleSchema>.<SampleTable>.

Here are some examples of each type.

Databases

Configure data capture 170

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

Amazon Data Firehose Developer Guide

Example of sample regular expression (for including databases): .*
Example of explicit naming of tables: <SampleDatabase>

Tables

Example of sample regular expression for excluding tables: <SampleDatabase>.*
Example of explicit naming of tables for MySQL : <SampleDatabase>.<SampleTable1>
Example of explicit naming of tables for PostgreSQL : <SampleSchema>.<SampleTable>

Columns

Example of sample regular expression (for excluding columns): <SampleDatabase>.*.*
Example of explicit naming of columns for
 MySQL : <SampleDatabase>.<SampleTable>.<SampleColumn>
Example of explicit naming of columns for
 PostgreSQL : <SampleSchema>.<SampleTable>.<SampleColumn>

Configure surrogate keys

Firehose requires unique keys for configured tables to take the initial copy of data. If you have
tables without a primary key in your databases, then you must provide surrogate key for such
tables. If all your tables have primary keys, then you need not configure this section. If Firehose
finds missing surrogate keys for tables without primary keys, then its snapshot (initial copy) process
fails. In such scenarios, Firehose throws an error to CloudWatch Logs. For surrogate keys, you must
explicitly configure keys with a fully qualified name as shown in the following example.

For MySQL

SampleDatabase.SampleTable:SampleColumn

For PostgreSQL

SampleSchema.SampleTable:SampleColumn

Provide snapshot watermark table

Firehose uses a watermark mechanism during incremental snapshot of tables. You must provide
this snapshot watermark table that you created as part of the prerequisite. Input the snapshot
watermark table in the format as shown in the following example.

Configure surrogate keys 171

Amazon Data Firehose Developer Guide

For MySQL: DatabaseName.TableName
For PostgreSQL: SchemaName.TableName

Note

Don't delete the watermark table or manually insert or delete records from the watermark
table. Also, you mustn't revoke the permission for a database user created for Firehose to
insert or delete records from the watermark table.

Next Step: ???

Configure destination settings

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Firehose supports delivery of database changes to Apache Iceberg Tables. Configure the following
destination settings to set up the Firehose stream with the database as your source.

Connect data catalog

Apache Iceberg requires a data catalog to write to Apache Iceberg Tables. Firehose integrates with
AWS Glue Data Catalog for Apache Iceberg Tables. You can use AWS Glue Data Catalog in the same
account as your Firehose stream or in a cross-account and in the same Region as your Firehose
stream (default), or in a different Region.

Enable automatic creation of tables

If you enable this option, Firehose automatically creates required databases, tables, and columns in
your target destination with the same name and schema as the source databases. If you enable this
option and if Firehose finds some tables with the same name and schema already present, then it
will use those existing tables instead and create only missing databases, tables, and columns.

Configure destination settings 172

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

If you do not enable this option, Firehose tries to find required databases, tables, and columns. If
Firehose can't find them, it throws an error and delivers data to the S3 error bucket.

Note

For Firehose to deliver data to Iceberg Tables successfully, the database, table, and column
names along with the schema should completely match. If the names of database objects
and schemas do not match, then Firehose throws an error and delivers data to an S3 error
bucket.

For MySQL databases, source database maps to AWS Glue Database and source table maps to AWS
Glue Table.

For PostgreSQL, source database maps to AWS Glue Database and source table maps to AWS Glue
Table with a name of SchemaName_TableName.

Note

For Amazon S3 Tables, Firehose doesn't support the automatic creation of tables. You must
create S3 Tables before creating a Firehose stream.

Enable schema evolution

If you enable this option, Firehose automatically evolves the schema of Apache Iceberg Tables
when the source schema changes. As a part of schema evolution, Firehose currently supports new
column addition. For example, if a new column is added to a table on the source database side,
Firehose automatically takes those changes and adds the new column to the appropriate Apache
Iceberg Table.

Specify retry duration

You can use this configuration to specify the duration in seconds for which Firehose should attempt
to retry, if it encounters failures in writing to Apache Iceberg Tables in Amazon S3. You can set any
value from 0 to 7200 seconds for performing retries. By default, Firehose retries for 300 seconds.

Configure destination settings 173

Amazon Data Firehose Developer Guide

Handle failed delivery or processing

You must configure Firehose to deliver records to an S3 backup bucket in case it fails to process
or deliver a stream after expiry of retry duration. For this, configure the S3 backup bucket and S3
backup bucket error output prefix.

Configure buffer hints

Firehose buffers incoming streaming data in memory to a certain size (Buffering size) and for a
certain period of time (Buffering interval) before delivering it to Apache Iceberg Tables. You can
choose a buffer size of 1–128 MiBs and a buffer interval of 0–900 seconds. Higher buffer hints
results in fewer S3 writes, lower cost of compaction due to larger data files, and faster query
runtime, but with a higher latency. Lower buffer hint values deliver the data with lower latency.

Configure advanced settings

For advanced settings, you can configure server-side encryption, error logging, permissions, and
tags for your Apache Iceberg Tables. For more information, see the section called “Configure
advanced settings”. You must add the IAM role that you created as part of the the section called
“Grant Firehose access” to use Apache Iceberg Tables as a destination. Firehose will assume the role
to access AWS Glue tables and write to Amazon S3 buckets.

We highly recommend that you enable CloudWatch Logs. If there is any issue with Firehose
connecting to databases or taking a snapshot of the tables, Firehose throws an error and logs to
configured Logs. This is the only mechanism that informs you about the errors.

Firehose stream creation can take several minutes to complete. After you successfully create the
Firehose stream, you can start ingesting data into it and can view the data in Apache Iceberg
tables.

Note

Configure only one Firehose stream for one database. Having multiple Firehose streams
for one database creates multiple connectors to the database, which impacts the database
performance.

Once a Firehose streams is created, the initial status of existing tables will be snapshot
IN_PROGRESS. Do not change the schema of the source table when the snapshot status is set
toIN_PROGRESS. If you change the schema of the table when the snapshot is in progress, then

Configure destination settings 174

Amazon Data Firehose Developer Guide

Firehose skips the snapshot of the table. When the snapshot process is complete, its status changes
to COMPLETE.

Monitor metrics

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

For sourcing CDC changes from databases, Firehose emits the following CloudWatch metrics at a
table level.

Metric Description

DataReadFromDataba
seSource.Bytes

The number of [raw] bytes read from the source
database.

Units: Bytes

DataReadFromDataba
seSource.Records

The number of records read from the source database.

Units: Count

BytesPerSecondLimit Current limit of throughput at which Firehose reads
from the source database.

Units: Bytes/sec

FailedValidation.Bytes The number of [raw] bytes that failed record validation.

Units: Bytes

FailedValidation.Records The number of records that failed record validation.

Units: Count

Dropped.Bytes The number of bytes that are dropped.

Monitor metrics 175

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

Metric Description

Units: Bytes

Dropped.Records The number of records that are dropped.

Units: Count

Grant Firehose access to replicate database changes to Apache
Iceberg Tables

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

You must have an IAM role before you create a Firehose stream and Apache Iceberg Tables using
AWS Glue. Use the following steps to create a policy and an IAM role. Firehose assumes this IAM
role and performs the required actions.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Create a policy and choose JSON in policy editor.

3. Add the following inline policy that grants Amazon S3 permissions like the read/write
permissions, permissions to update the table in the data catalog, and other.

{
"Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetDatabase",
 "glue:UpdateTable",

Grant Firehose access 176

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

 "glue:CreateTable",
 "glue:CreateDatabase"
],
 "Resource": [
 "arn:aws:glue:<region>:<aws-account-id>:catalog",
 "arn:aws:glue:<region>:<aws-account-id>:database/*",
 "arn:aws:glue:<region>:<aws-account-id>:table/*/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:<region>:<aws-account-id>:key/<key-id>"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },

Grant Firehose access 177

Amazon Data Firehose Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:<region>:<aws-account-id>:log-group:<log-group-
name>:log-stream:<log-stream-name>"
]
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "<Secret ARN>"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpointServices"
],
 "Resource": [
 "*"
]
 }
]
}

Understand supported data types

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Firehose supports all the primitive and complex data types that Apache Iceberg supports. For more
information, see Schemas and Data Types.

MySQL to Iceberg data type mapping

Understand supported data types 178

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region
https://iceberg.apache.org/spec/#schemas-and-data-types

Amazon Data Firehose Developer Guide

MySQL type Iceberg data Type

BOOLEAN, BOOL boolean

BIT(1) boolean

BIT(>1) binary

TINYINT integer

SMALLINT[(M)] integer

MEDIUMINT[(M)] integer

INT, INTEGER[(M)] integer

BIGINT[(M)] integer

REAL[(M,D)] float

FLOAT[(P)] float

DOUBLE[(M,D)] float

CHAR(M)] string

VARCHAR(M)] string

BINARY(M)] binary or string

VARBINARY(M)] binary or string

TINYBLOB binary or string

TINYTEXT string

BLOB binary or string

TEXT string

MEDIUMBLOB binary or string

Understand supported data types 179

Amazon Data Firehose Developer Guide

MySQL type Iceberg data Type

MEDIUMTEXT string

LONGBLOB binary or string

LONGTEXT string

JSON string

ENUM string

SET string

YEAR[(2|4)] integer

TIMESTAMP[(M)] string

DATE integer

TIME[(M)] integer

DATETIME, DATETIME(0), DATETIME(1),
DATETIME(2), DATETIME(3)

integer

DATETIME(4), DATETIME(5), DATETIME(6) integer

GEOMETRY Struct

LINESTRING Struct

POLYGON Struct

MULTIPOINT Struct

MULTILINESTRING Struct

MULTIPOLYGON Struct

GEOMETRYCOLLECTION Struct

Understand supported data types 180

Amazon Data Firehose Developer Guide

PostgreSQL to Iceberg data type mapping

PostgreSQL type Iceberg data type

BOOLEAN boolean

BIT(1) boolean

BIT(> 1) binary

BIT VARYING[(M)] binary

SMALLINT, SMALLSERIAL integer

INTEGER, SERIAL integer

BIGINT, BIGSERIAL, OID integer

REAL float

DOUBLE PRECISION float

CHAR[(M)] string

VARCHAR[(M)] string

CHARACTER[(M)] string

CHARACTER VARYING[(M)] string

TIMESTAMPTZ, TIMESTAMP WITH TIME ZONE string

TIMETZ, TIME WITH TIME ZONE string

INTERVAL [P] integer

INTERVAL [P] string

BYTEA binary or string

JSON, JSONB string

Understand supported data types 181

Amazon Data Firehose Developer Guide

PostgreSQL type Iceberg data type

XML string

UUID string

POINT string

LTREE string

CITEXT string

INET string

INT4RANGE string

INT8RANGE string

NUMRANGE string

TSRANGE string

TSTZRANGE string

DATERANGE string

ENUM string

DATE integer

TIME(1), TIME(2), TIME(3) integer

TIME(4), TIME(5), TIME(6) integer

TIMESTAMP(1), TIMESTAMP(2), TIMESTAMP(3) integer

TIMESTAMP(4), TIMESTAMP(5), TIMESTAMP(6),
TIMESTAMP

integer

NUMERIC[(M[,D])] binary

DECIMAL[(M[,D])] binary

Understand supported data types 182

Amazon Data Firehose Developer Guide

PostgreSQL type Iceberg data type

MONEY[(M[,D])] binary

INET string

CIDR string

MACADDR string

MACADDR8 string

GEOMETRY (planar) Struct

GEOGRAPHY (spherical) Struct

Set up database connectivity

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

This section provides detailed instructions for setting up databases to work with Firehose. It covers
the creation of necessary tables, roles, and permissions for MySQL and PostgreSQL databases,
including RDS, Aurora, and self-managed instances on EC2. The document emphasizes the
importance of creating a watermark table and granting appropriate access to Firehose for data
replication and streaming, and the configuration of transaction logs.

Key points to note

• Firehose uses watermark table in your database to store the required watermarks. Firehose
requires a watermark table for each stream.

• Procedures are provided for MySQL and PostgreSQL to automate setup.

• Different setups are needed for RDS/Aurora vs. self-managed databases.

• Proper permissions and roles are crucial for Firehose functionality.

Set up database connectivity 183

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

Topics

• MySQL - RDS, Aurora and self-managed databases running on Amazon EC2

• PostgreSQL - RDS and Aurora Databases

• PostgreSQL - self-managed databases running on Amazon EC2

• PostgreSQL - sharing table ownership for RDS or self-managed databases running on Amazon
EC2

• Enable transaction logs

MySQL - RDS, Aurora and self-managed databases running on Amazon
EC2

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Create the following SQL procedure in your database and then call the procedure to create
watermark table, database user for Firehose access to the database, and provide required
permissions for the Firehose database user. You can use this procedure for self-hosted MySQL, RDS
and Aurora MySQL databases.

Note

Some older database versions may not support the string IF NOT EXISTS in the CREATE
PROCEDURE line. In such cases, remove IF NOT EXISTS from the CREATE PROCEDURE
and use the rest of the procedure.

DELIMITER //
CREATE PROCEDURE IF NOT EXISTS setupFirehose(IN databaseName TEXT, IN
 watermarkTableName TEXT, IN firehoseUserName TEXT, IN firehosePassword TEXT)
BEGIN

 -- Create watermark table

MySQL - RDS, Aurora and self-managed databases running on Amazon EC2 184

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

 SET @create_watermark_text := CONCAT('CREATE TABLE IF NOT EXISTS ', databaseName,
 '.', watermarkTableName, '(id varchar(64) PRIMARY KEY, type varchar(32), data
 varchar(2048))');
 PREPARE createWatermarkTable from @create_watermark_text;
 EXECUTE createWatermarkTable;
 DEALLOCATE PREPARE createWatermarkTable;

 SELECT CONCAT('Created watermark table with name ', databaseName, '.',
 watermarkTableName) as log;

 -- Create firehose user
 SET @create_user_text := CONCAT('CREATE USER IF NOT EXISTS ''', firehoseUserName,
 ''' IDENTIFIED BY ''', firehosePassword, '''');
 PREPARE createUser from @create_user_text;
 EXECUTE createUser;
 DEALLOCATE PREPARE createUser;

 SELECT CONCAT('Created user with name ', firehoseUserName) as log;

 -- Grant privileges to firehose user
 -- Edit *.* to database/tables you want to grant Firehose access to
 SET @grant_user_text := CONCAT('GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION
 SLAVE, REPLICATION CLIENT, LOCK TABLES
ON *.* TO ''', firehoseUserName, '''');
 PREPARE grantUser from @grant_user_text;
 EXECUTE grantUser;
 DEALLOCATE PREPARE grantUser;

 SET @grant_user_watermark_text := CONCAT('GRANT CREATE, INSERT, DELETE ON ',
 watermarkTableName, ' to ', firehoseUserName);
 PREPARE grantUserWatermark from @grant_user_watermark_text;
 EXECUTE grantUserWatermark;
 DEALLOCATE PREPARE grantUserWatermark;

 SELECT CONCAT('Granted necessary permissions to user ', firehoseUserName) AS log;

 FLUSH PRIVILEGES;

 -- Show if binlog enabled/disabled
 SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::" FROM
 performance_schema.global_variables WHERE variable_name='log_bin';

END //

MySQL - RDS, Aurora and self-managed databases running on Amazon EC2 185

Amazon Data Firehose Developer Guide

DELIMITER ;

Usage

Call this procedure using a, SQL Client.

CALL setupFirehose('database', 'watermark_test', 'new_user', 'Test123');

PostgreSQL - RDS and Aurora Databases

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Create the following SQL procedure in your database to create watermark table, role for Firehose
access to database, provide required permissions for the Firehose role, and create group ownership
role and add the Firehose role to the group. You can use this procedure for RDS and Aurora
PostgreSQL databases.

Note

Some older database versions may not support the string IF NOT EXISTS in the CREATE
PROCEDURE line. In such cases, remove IF NOT EXISTS from the CREATE PROCEDURE
and use the rest of the procedure.

CREATE OR REPLACE PROCEDURE setupFirehose(
 p_schema_name TEXT,
 p_database_name TEXT,
 p_watermark_name TEXT,
 p_role_name TEXT,
 p_role_password TEXT,
 p_group_owner_name TEXT
)
LANGUAGE plpgsql
AS $$
BEGIN

PostgreSQL - RDS and Aurora Databases 186

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

 -- Create watermark table
 EXECUTE 'CREATE TABLE IF NOT EXISTS ' || quote_ident(p_database_name) || '.' ||
 quote_ident(p_schema_name) || '.' || quote_ident(p_watermark_name) || '(id varchar(64)
 PRIMARY KEY, type varchar(32), data varchar(2048))';

 RAISE NOTICE 'Created watermark table: %', p_watermark_name;

 -- Create the role with the given password
 IF EXISTS (
 SELECT FROM pg_catalog.pg_roles
 WHERE rolname = p_role_name)
 THEN
 RAISE NOTICE 'Role % already exists. Skipping creation', p_role_name;
 ELSE
 EXECUTE 'CREATE ROLE ' || p_role_name || ' WITH LOGIN INHERIT PASSWORD ' ||
 quote_literal(p_role_password);
 RAISE NOTICE 'Created role: %', p_role_name;
 END IF;

 -- Grant required privileges to the role
 EXECUTE 'GRANT CREATE ON SCHEMA ' || quote_ident(p_schema_name) || ' TO ' ||
 quote_ident(p_role_name);
 EXECUTE 'GRANT CREATE ON DATABASE ' || quote_ident(p_database_name) || ' TO ' ||
 quote_ident(p_role_name);
 EXECUTE 'GRANT rds_replication TO ' || quote_ident(p_role_name);
 EXECUTE 'ALTER TABLE ' || quote_ident(p_schema_name) || '.' ||
 quote_ident(p_watermark_name) || ' OWNER TO ' || quote_ident(p_role_name);

 -- Create shared ownership role
 IF EXISTS (
 SELECT FROM pg_catalog.pg_roles
 WHERE rolname = p_group_owner_name)
 THEN
 RAISE NOTICE 'Role % already exists. Skipping creation', p_group_owner_name;
 ELSE
 EXECUTE 'CREATE ROLE ' || quote_ident(p_group_owner_name);
 RAISE NOTICE 'Created role: %', p_group_owner_name;
 END IF;

 EXECUTE 'GRANT ' || quote_ident(p_group_owner_name) || ' TO ' ||
 quote_ident(p_role_name);

END;

PostgreSQL - RDS and Aurora Databases 187

Amazon Data Firehose Developer Guide

$$;

Usage

Call this procedure using an SQL Client.

CALL
 setupFirehose('public', 'test_db', 'watermark', 'new_role', 'Test123', 'group_role');

PostgreSQL - self-managed databases running on Amazon EC2

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Create the following SQL procedure in your database to create watermark table, role for Firehose
access to database, provide required permissions for the Firehose role, and create group ownership
role and the Firehose role to the group. You can use this procedure for PostgreSQL databases
running on EC2.

Note

Some older database versions may not support the string IF NOT EXISTS in the CREATE
PROCEDURE line. In such cases, remove IF NOT EXISTS from the CREATE PROCEDURE
and use the rest of the procedure.

CREATE OR REPLACE PROCEDURE setupFirehose(
 p_schema_name TEXT,
 p_database_name TEXT,
 p_watermark_name TEXT,
 p_role_name TEXT,
 p_role_password TEXT,
 p_group_owner_name TEXT
)
LANGUAGE plpgsql
AS $$

PostgreSQL - self-managed databases running on Amazon EC2 188

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

BEGIN

 -- Use logical decoding
 EXECUTE 'ALTER SYSTEM SET wal_level = logical';

 -- Create watermark table
 EXECUTE 'CREATE TABLE IF NOT EXISTS ' || quote_ident(p_database_name) || '.' ||
 quote_ident(p_schema_name) || '.' || quote_ident(p_watermark_name) || '(id varchar(64)
 PRIMARY KEY, type varchar(32), data varchar(2048))';

 RAISE NOTICE 'Created watermark table: %', p_watermark_name;

 -- Create the role with the given password
 IF EXISTS (
 SELECT FROM pg_catalog.pg_roles
 WHERE rolname = p_role_name)
 THEN
 RAISE NOTICE 'Role % already exists. Skipping creation', p_role_name;
 ELSE
 EXECUTE 'CREATE ROLE ' || p_role_name || ' WITH LOGIN INHERIT REPLICATION
 PASSWORD ' || quote_literal(p_role_password);
 RAISE NOTICE 'Created role: %', p_role_name;
 END IF;

 -- Grant required privileges to the role
 EXECUTE 'GRANT CREATE ON SCHEMA ' || quote_ident(p_schema_name) || ' TO ' ||
 quote_ident(p_role_name);
 EXECUTE 'GRANT CREATE ON DATABASE ' || quote_ident(p_database_name) || ' TO ' ||
 quote_ident(p_role_name);
 EXECUTE 'ALTER TABLE ' || quote_ident(p_schema_name) || '.' ||
 quote_ident(p_watermark_name) || ' OWNER TO ' || quote_ident(p_role_name);

 -- Create shared ownership role
 IF EXISTS (
 SELECT FROM pg_catalog.pg_roles
 WHERE rolname = p_group_owner_name)
 THEN
 RAISE NOTICE 'Role % already exists. Skipping creation', p_group_owner_name;
 ELSE
 EXECUTE 'CREATE ROLE ' || quote_ident(p_group_owner_name);
 RAISE NOTICE 'Created role: %', p_group_owner_name;
 END IF;

PostgreSQL - self-managed databases running on Amazon EC2 189

Amazon Data Firehose Developer Guide

 EXECUTE 'GRANT ' || quote_ident(p_group_owner_name) || ' TO ' ||
 quote_ident(p_role_name);

END;
$$;

Usage

Call this procedure using an SQL Client.

CALL
 setupFirehose('public', 'test_db', 'watermark', 'new_role', 'Test123', 'group_role');

PostgreSQL - sharing table ownership for RDS or self-managed
databases running on Amazon EC2

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

This procedure updates tables that you want to use with Firehose so that the ownership is shared
between the original owner and the role being used by Firehose. This procedure needs to be called
for each table that you want to use with Firehose. This procedure uses the group role that you
created with the previous procedure.

Note

Some older database versions may not support the string IF NOT EXISTS in the CREATE
PROCEDURE line. In such cases, remove IF NOT EXISTS from the CREATE PROCEDURE
and use the rest of the procedure.

CREATE OR REPLACE PROCEDURE grant_shared_ownership(
 p_schema_name TEXT,
 p_table_name TEXT,
 p_group_owner_name TEXT

PostgreSQL - sharing table ownership for RDS or self-managed databases running on Amazon EC2 190

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

)
LANGUAGE plpgsql
AS $$
DECLARE
 l_table_owner TEXT;
BEGIN

 -- Get the owner of the specified table
 SELECT pg_catalog.pg_get_userbyid(c.relowner)
 INTO l_table_owner
 FROM pg_catalog.pg_class c
 WHERE c.relname = p_table_name;

 IF l_table_owner IS NOT NULL THEN

 -- Add table owner to the group
 EXECUTE 'GRANT ' || quote_ident(p_group_owner_name) || ' TO ' ||
 quote_ident(l_table_owner);

 -- Change ownership of table to group
 EXECUTE 'ALTER TABLE ' || quote_ident(p_schema_name) || '.' ||
 quote_ident(p_table_name) || ' OWNER TO ' || quote_ident(p_group_owner_name);
 ELSE
 RAISE EXCEPTION 'Table % not found', p_table_name;
 END IF;
END;
$$;

Usage

Call this procedure using an SQL Client.

CALL grant_shared_ownership('public', 'cx_table', 'group_role');

Enable transaction logs

Note

Firehose supports database as a source in all AWS Regions except China Regions, AWS
GovCloud (US) Regions, and Asia Pacific (Malaysia). This feature is in preview and is subject
to change. Do not use it for your production workloads.

Enable transaction logs 191

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region

Amazon Data Firehose Developer Guide

The transaction logs record all database changes such as INSERT, UPDATE and DELETE in the order
it is committed to the database. Firehose reads the transaction logs and replicates the changes to
Apache Iceberg Tables. You must enable the transaction logs if you haven't already. The following
sections show how you can enable transaction logs for various MySQL and PostgreSQL databases.

MySQL

Self-managed MySQL running on EC2

• Check whether the log-bin option is enabled:

mysql> SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::"
FROM performance_schema.global_variables WHERE variable_name='log_bin';

• For Databases running on EC2, If the binlog is OFF, add the properties in the following table
to the configuration file for the MySQL server. For more information on how to set the
parameters, see MySQL documentation on binlog.

server-id = 223344 # Querying variable is called server_id, e.g.
 SELECT variable_value FROM information_schema.global_variables WHERE
 variable_name='server_id';
log_bin = mysql-bin
binlog_format = ROW
binlog_row_image = FULL
binlog_expire_logs_seconds = 864000

RDS MySQL

• If binary logging is not enabled, then enable it with the steps outlined in Configuring RDS for
MySQL binary logging.

• Set the MySQL binary logging format to ROW format.

• Set the binlog retention period at least to 72 hours. To increase the retention period of
binlog, refer to RDS documentation. By default, the retention period is NULL, so you must set
the retention period to a non-zero value.

Enable transaction logs 192

https://dev.mysql.com/doc/refman/8.4/en/binary-log.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.MySQL.BinaryFormat.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.MySQL.BinaryFormat.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-stored-proc-configuring.html#mysql_rds_set_configuration

Amazon Data Firehose Developer Guide

Aurora MySQL

• If binary logging, is not enabled, then enable it for Aurora MySQL with the steps in
configuring Aurora for MySQL binary logging.

• Set the MySQL binary logging format to ROW format.

• Set the binlog retention period at least to 72 hours. To increase the retention period of
binlog, refer to Setting and showing binary log configuration. By default, the retention period
is NULL, so you must set the retention period to a non-zero value.

PostgreSQL

Self-managed PostgreSQL running on EC2

• The above script for self-managed PostgreSQL sets the wal_level to logical.

• Configure additional WAL retention settings in postgresql.conf

• PostgreSQL 12 – wal_keep_segments = <int>

• PostgreSQL 13+ – wal_keep_size = <int>

RDS and Aurora PostgreSQL

• You must enable the Logical replication (Write-ahead-Logging) through RDS along with WAL
retention settings. For more information, see Logical decoding on a read replica.

Enable transaction logs 193

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_LogAccess.MySQL.BinaryFormat.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-stored-proc-configuring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PostgreSQL.Replication.ReadReplicas.html#USER_PostgreSQL.Replication.ReadReplicas.LogicalDecoding

Amazon Data Firehose Developer Guide

Tag a Firehose stream

You can assign your own metadata to Firehose streams that you create in Amazon Data Firehose in
the form of tags. A tag is a key-value pair that you define for a stream. Using tags is a simple yet
powerful way to manage AWS resources and organize data, including billing data.

You can specify tags when you invoke CreateDeliveryStream to create a new Firehose stream. For
existing Firehose streams, you can add, list, and remove tags using the following three operations:

• TagDeliveryStream

• ListTagsForDeliveryStream

• UntagDeliveryStream

Understand tag basics

You can use the Amazon Data Firehose API operations to complete the following tasks:

• Add tags to a Firehose stream.

• List the tags for your Firehose streams.

• Remove tags from a Firehose stream.

You can use tags to categorize your Firehose streams. For example, you can categorize Firehose
streams by purpose, owner, or environment. Because you define the key and value for each tag, you
can create a custom set of categories to meet your specific needs. For example, you might define a
set of tags that helps you track Firehose streams by owner and associated application.

The following are several examples of tags:

• Project: Project name

• Owner: Name

• Purpose: Load testing

• Application: Application name

• Environment: Production

Understand tag basics 194

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html

Amazon Data Firehose Developer Guide

If you specify tags in the CreateDeliveryStream action, Amazon Data Firehose performs an
additional authorization on the firehose:TagDeliveryStream action to verify if users have
permissions to create tags. If you do not provide this permission, requests to create new Firehose
streams with IAM resource tags will fail with an AccessDeniedException such as following.

AccessDeniedException
User: arn:aws:sts::x:assumed-role/x/x is not authorized to perform:
 firehose:TagDeliveryStream on resource: arn:aws:firehose:us-east-1:x:deliverystream/x
 with an explicit deny in an identity-based policy.

The following example demonstrates a policy that allows users to create a Firehose stream and
apply tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:CreateDeliveryStream",
 "Resource": "*",
 }
 },
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 }
 }
]
}

Track costs with tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS
resources, including Firehose streams, your AWS cost allocation report includes usage and costs
aggregated by tags. You can organize your costs across multiple services by applying tags that
represent business categories (such as cost centers, application names, or owners). For more
information, see Use Cost Allocation Tags for Custom Billing Reports in the AWS Billing User Guide.

Track costs with tagging 195

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Data Firehose Developer Guide

Know tag restrictions

The following restrictions apply to tags in Amazon Data Firehose.

Basic restrictions

• The maximum number of tags per resource (stream) is 50.

• Tag keys and values are case-sensitive.

• You can't change or edit tags for a deleted stream.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag
overwrites the existing key-value pair.

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates
tags that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode
letters, digits, white space, and any of the following special characters: _ . / = + - @.

Know tag restrictions 196

Amazon Data Firehose Developer Guide

Security in Amazon Data Firehose

Cloud security at AWS is the highest priority. As an AWS customer, you will benefit from a data
center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to Data Firehose,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Data Firehose. The following topics show you how to configure Data Firehose to meet your
security and compliance objectives. You'll also learn how to use other AWS services that can help
you to monitor and secure your Data Firehose resources.

Topics

• Data protection in Amazon Data Firehose

• Controlling access with Amazon Data Firehose

• Authenticate with AWS Secrets Manager in Amazon Data Firehose

• Manage IAM roles through Amazon Data Firehose console

• Understand compliance for Amazon Data Firehose

• Resilience in Amazon Data Firehose

• Understand infrastructure security in Amazon Data Firehose

• Implement security best practices for Amazon Data Firehose

197

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Data Firehose Developer Guide

Data protection in Amazon Data Firehose

Amazon Data Firehose encrypts all data in transit using TLS protocol. Furthermore, for data
stored in interim storage during processing, Amazon Data Firehose encrypts data using AWS Key
Management Service and verifies data integrity using checksum verification.

If you have sensitive data, you can enable server-side data encryption when you use Amazon Data
Firehose. How you do this depends on the source of your data.

Note

If you require FIPS 140-2 validated cryptographic modules when accessing AWS through
a command line interface or an API, use a FIPS endpoint. For more information about the
available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Server-side encryption with Kinesis Data Streams

When you send data from your data producers to your data stream, Kinesis Data Streams encrypts
your data using an AWS Key Management Service (AWS KMS) key before storing the data at rest.
When your Firehose stream reads the data from your data stream, Kinesis Data Streams first
decrypts the data and then sends it to Amazon Data Firehose. Amazon Data Firehose buffers
the data in memory based on the buffering hints that you specify. It then delivers it to your
destinations without storing the unencrypted data at rest.

For information about how to enable server-side encryption for Kinesis Data Streams, see Using
Server-Side Encryption in the Amazon Kinesis Data Streams Developer Guide.

Server-side encryption with Direct PUT or other data sources

If you send data to your Firehose stream using PutRecord or PutRecordBatch, or if you send the
data using AWS IoT, Amazon CloudWatch Logs, or CloudWatch Events, you can turn on server-side
encryption by using the StartDeliveryStreamEncryption operation.

To stop server-side-encryption, use the StopDeliveryStreamEncryption operation.

You can also enable SSE when you create the Firehose stream. To do that, specify
DeliveryStreamEncryptionConfigurationInput when you invoke CreateDeliveryStream.

Data Protection 198

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/streams/latest/dev/server-side-encryption.html
https://docs.aws.amazon.com/streams/latest/dev/server-side-encryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeliveryStreamEncryptionConfigurationInput.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html

Amazon Data Firehose Developer Guide

When the CMK is of type CUSTOMER_MANAGED_CMK, if the Amazon Data Firehose service is unable
to decrypt records because of a KMSNotFoundException, a KMSInvalidStateException,
a KMSDisabledException, or a KMSAccessDeniedException, the service waits up to 24
hours (the retention period) for you to resolve the problem. If the problem persists beyond the
retention period, the service skips those records that have passed the retention period and couldn't
be decrypted, and then discards the data. Amazon Data Firehose provides the following four
CloudWatch metrics that you can use to track the four AWS KMS exceptions:

• KMSKeyAccessDenied

• KMSKeyDisabled

• KMSKeyInvalidState

• KMSKeyNotFound

For more information about these four metrics, see the section called “Monitoring with
CloudWatch Metrics”.

Important

To encrypt your Firehose stream, use symmetric CMKs. Amazon Data Firehose doesn't
support asymmetric CMKs. For information about symmetric and asymmetric CMKs, see
About Symmetric and Asymmetric CMKs in the AWS Key Management Service developer
guide.

Note

When you use a customer managed key (CUSTOMER_MANAGED_CMK) to enable server-
side encryption (SSE) for your Firehose stream, the Firehose service sets an encryption
context whenever it uses your key. Since this encryption context represents an occurrence
where a key owned by your AWS account was used, it is logged as part of AWS CloudTrail
event logs for your AWS account. This encryption context is system generated by the
Firehose service. Your application should not make any assumptions about the format or
content of the encryption context set by the Firehose service.

Server-side encryption with Direct PUT or other data sources 199

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Data Firehose Developer Guide

Controlling access with Amazon Data Firehose

The following sections cover how to control access to and from your Amazon Data Firehose
resources. The information they cover includes how to grant your application access so it can
send data to your Firehose stream. They also describe how you can grant Amazon Data Firehose
access to your Amazon Simple Storage Service (Amazon S3) bucket, Amazon Redshift cluster, or
Amazon OpenSearch Service cluster, as well as the access permissions you need if you use Datadog,
Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, or Sumo Logic as your destination. Finally,
you'll find in this topic guidance on how to configure Amazon Data Firehose so it can deliver data
to a destination that belongs to a different AWS account. The technology for managing all these
forms of access is AWS Identity and Access Management (IAM). For more information about IAM,
see What is IAM?.

Contents

• Grant access to your Firehose resources

• Grant Firehose access to your private Amazon MSK cluster

• Allow Firehose to assume an IAM role

• Grant Firehose access to AWS Glue for data format conversion

• Grant Firehose access to an Amazon S3 destination

• Grant Firehose access to Amazon S3 Tables

• Grant Firehose access to an Apache Iceberg Tables destination

• Grant Firehose access to an Amazon Redshift destination

• Grant Firehose access to a public OpenSearch Service destination

• Grant Firehose access to an OpenSearch Service destination in a VPC

• Grant Firehose access to a public OpenSearch Serverless destination

• Grant Firehose access to an OpenSearch Serverless destination in a VPC

• Grant Firehose access to a Splunk destination

• Accessing Splunk in VPC

• Ingest VPC flow logs into Splunk using Amazon Data Firehose

• Accessing Snowflake or HTTP end point

• Grant Firehose access to a Snowflake destination

• Accessing Snowflake in VPC

• Grant Firehose access to an HTTP endpoint destination

Controlling access 200

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html

Amazon Data Firehose Developer Guide

• Cross-account delivery from Amazon MSK

• Cross-account delivery to an Amazon S3 destination

• Cross-account delivery to an OpenSearch Service destination

• Using tags to control access

Grant access to your Firehose resources

To give your application access to your Firehose stream, use a policy similar to this example. You
can adjust the individual API operations to which you grant access by modifying the Action
section, or grant access to all operations with "firehose:*".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "firehose:DeleteDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch",
 "firehose:UpdateDestination"
],
 "Resource": [
 "arn:aws:firehose:region:account-id:deliverystream/delivery-stream-
name"
]
 }
]
}

Grant Firehose access to your private Amazon MSK cluster

If the source of your Firehose stream is a private Amazon MSK cluster, then use a policy similar to
this example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {

Grant access to your Firehose resources 201

Amazon Data Firehose Developer Guide

 "Service": [
 "firehose.amazonaws.com"
]
 },
 "Effect": "Allow",
 "Action": [
 "kafka:CreateVpcConnection"
],
 "Resource": "cluster-arn"
 }
]
}

You must add a policy like this to the cluster's resource-based policy to grant Firehose service
principal the permission to invoke the Amazon MSK CreateVpcConnection API operation.

Allow Firehose to assume an IAM role

This section describes the permissions and policies that grant Amazon Data Firehose access to
ingest, process, and deliver data from source to destination.

Note

If you use the console to create a Firehose stream and choose the option to create a new
role, AWS attaches the required trust policy to the role. If you want Amazon Data Firehose
to use an existing IAM role or if you create a role on your own, attach the following trust
policies to that role so that Amazon Data Firehose can assume it. Edit the policies to replace
account-id with your AWS account ID. For information about how to modify the trust
relationship of a role, see Modifying a Role.

Amazon Data Firehose uses an IAM role for all the permissions that the Firehose stream needs to
process and deliver data. Make sure that the following trust policies are attached to that role so
that Amazon Data Firehose can assume it.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

Allow Firehose to assume an IAM role 202

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Data Firehose Developer Guide

 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 }]
}

This policy uses the sts:ExternalId condition context key to ensure that only Amazon
Data Firehose activity originating from your AWS account can assume this IAM role. For more
information about preventing unauthorized use of IAM roles, see The confused deputy problem in
the IAM User Guide.

If you choose Amazon MSK as the source for your Firehose stream, you must specify another
IAM role that grants Amazon Data Firehose permissions to ingest source data from the specified
Amazon MSK cluster. Make sure that the following trust policies are attached to that role so that
Amazon Data Firehose can assume it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "Service": [
 "firehose.amazonaws.com"
]
 },
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 }
]
}

Make sure that this role that grants Amazon Data Firehose permissions to ingest source data from
the specified Amazon MSK cluster grants the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect":"Allow",
 "Action": [

Allow Firehose to assume an IAM role 203

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Data Firehose Developer Guide

 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "CLUSTER-ARN"
 },
 {
 "Effect":"Allow",
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource": "TOPIC-ARN"
 }]
}

Grant Firehose access to AWS Glue for data format conversion

If your Firehose stream performs data-format conversion, Amazon Data Firehose references table
definitions stored in AWS Glue. To give Amazon Data Firehose the necessary access to AWS Glue,
add the following statement to your policy. For information on how to find the ARN of the table,
see Specifying AWS Glue Resource ARNs.

[{
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetTableVersion",
 "glue:GetTableVersions"
],
 "Resource": "table-arn"
}, {
 "Sid": "GetSchemaVersion",
 "Effect": "Allow",
 "Action": [
 "glue:GetSchemaVersion"
],
 "Resource": ["*"]
}]

Grant Firehose access to AWS Glue for data format conversion 204

https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html

Amazon Data Firehose Developer Guide

The recommended policy for getting schemas from schema registry has no resource restrictions.
For more information, see IAM examples for deserializers in the AWS Glue Developer Guide.

Grant Firehose access to an Amazon S3 destination

When you're using an Amazon S3 destination, Amazon Data Firehose delivers data to your S3
bucket and can optionally use an AWS KMS key that you own for data encryption. If error logging
is enabled, Amazon Data Firehose also sends data delivery errors to your CloudWatch log group
and streams. You are required to have an IAM role when creating a Firehose stream. Amazon Data
Firehose assumes that IAM role and gains access to the specified bucket, key, and CloudWatch log
group and streams.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket and AWS
KMS key. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions.
This grants the bucket owner full access to the objects delivered by Amazon Data Firehose.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"

Grant Firehose access to an Amazon S3 destination 205

https://docs.aws.amazon.com/glue/latest/dg/schema-registry-gs.html#schema-registry-gs1b

Amazon Data Firehose Developer Guide

],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]

Grant Firehose access to an Amazon S3 destination 206

Amazon Data Firehose Developer Guide

}

The policy above also has a statement that allows access to Amazon Kinesis Data Streams. If you
don't use Kinesis Data Streams as your data source, you can remove that statement. If you use
Amazon MSK as your source, then you can substitute that statement with the following:

{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:cluster/
{{mskClusterName}}/{{clusterUUID}}"
},
{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:topic/
{{mskClusterName}}/{{clusterUUID}}/{{mskTopicName}}"
},
{
 "Sid":"",
 "Effect":"Allow",
 "Action":[
 "kafka-cluster:DescribeGroup"
],
 "Resource":"arn:aws:kafka:{{mskClusterRegion}}:{{mskClusterAccount}}:group/
{{mskClusterName}}/{{clusterUUID}}/*"
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Grant Firehose access to an Amazon S3 destination 207

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

To learn how to grant Amazon Data Firehose access to an Amazon S3 destination in another
account, see the section called “Cross-account delivery to an Amazon S3 destination”.

Grant Firehose access to Amazon S3 Tables

You must have an IAM role before you create a Firehose stream. Use the following steps to create a
policy and an IAM role. Firehose assumes this IAM role and performs the required actions.

Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Create a policy and choose JSON in the policy editor. Add the following inline policy that grants
Amazon S3 permissions such as read/write permissions, permissions to update the table in the
data catalog, and others.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3TableAccessViaGlueFederation",
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetDatabase",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:<region>:<account-id>:catalog/s3tablescatalog/*",
 "arn:aws:glue:<region>:<account-id>:catalog/s3tablescatalog",
 "arn:aws:glue:<region>:<account-id>:catalog",
 "arn:aws:glue:<region>:<account-id>:database/*",
 "arn:aws:glue:<region>:<account-id>:table/*/*"
]
 },
 {
 "Sid": "S3DeliveryErrorBucketPermission",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",

Grant Firehose access to Amazon S3 Tables 208

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::<error delivery bucket>",
 "arn:aws:s3:::<error delivery bucket>/*"
]
 },
 {
 "Sid": "RequiredWhenUsingKinesisDataStreamsAsSource",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:<region>:<account-id>:stream/<stream-name>"
 },
 {
 "Sid": "RequiredWhenDoingMetadataReadsANDDataAndMetadataWriteViaLakeformation",
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredWhenUsingKMSEncryptionForS3ErrorBucketDelivery",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:<region>:<account-id>:key/<KMS-key-id>"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.<region>.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::<error delivery bucket>/
prefix*"
 }

Grant Firehose access to Amazon S3 Tables 209

Amazon Data Firehose Developer Guide

 }
 },
 {
 "Sid": "LoggingInCloudWatch",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:<region>:<account-id>:log-group:<log-group-name>:log-stream:<log-
stream-name>"
]
 },
 {
 "Sid": "RequiredWhenAttachingLambdaToFirehose",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:<region>:<account-id>:function:<function-name>:<function-
version>"
]
 }
]
}

The policy has statements that allows access to Amazon Kinesis Data Streams, invoking Lambda
functions, and access to AWS KMS keys. If you don't use any of these resources, you can remove the
respective statements. If error logging is enabled, Amazon Data Firehose also sends data delivery
errors to your CloudWatch log group and streams. You must configure log group and log stream
names to use this option. For log group and log stream names, see Monitor Amazon Data Firehose
Using CloudWatch Logs.

In the inline policies, replace <error delivery bucket> with your Amazon S3 bucket name,
aws-account-id and Region with a valid AWS account number and Region of the resource.

After you create the policy, open the IAM console at https://console.aws.amazon.com/iam/ and
create an IAM role with AWS service as the Trusted entity type.

For Service or use case, choose Kinesis. For Use case , choose Kinesis Firehose.

Grant Firehose access to Amazon S3 Tables 210

https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

On the next page, choose the policy created in the previous step to attach to this role. On the
review page, you will find trust policy already attached to this role giving permissions to the
Firehose service to assume this role. When you create the role, Amazon Data Firehose can assume it
to perform required operations on AWS Glue and S3 buckets. Add the Firehose service principal to
the trust policy of the role that is created. For more information, see Allow Firehose to assume an
IAM role.

Grant Firehose access to an Apache Iceberg Tables destination

You must have an IAM role before you create a Firehose stream and Apache Iceberg Tables using
AWS Glue. Use the following steps to create a policy and an IAM role. Firehose assumes this IAM
role and performs the required actions.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Create a policy and choose JSON in policy editor.

3. Add the following inline policy that grants Amazon S3 permissions like the read/write
permissions, permissions to update the table in the data catalog etc.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetDatabase",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:<region>:<aws-account-id>:catalog",
 "arn:aws:glue:<region>:<aws-account-id>:database/*",
 "arn:aws:glue:<region>:<aws-account-id>:table/*/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",

Grant Firehose access to an Apache Iceberg Tables destination 211

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:<region>:<aws-account-id>:stream/<stream-
name>"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:<region>:<aws-account-id>:key/<key-id>"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [

Grant Firehose access to an Apache Iceberg Tables destination 212

Amazon Data Firehose Developer Guide

 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:<region>:<aws-account-id>:log-group:<log-group-
name>:log-stream:<log-stream-name>"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:<region>:<aws-account-id>:function:<function-
name>:<function-version>"
]
 }
]
}

This policy has a statement that allows access to Amazon Kinesis Data Streams, invoking
Lambda functions, and access to KMS keys. If you don't use any of these resources, you can
remove the respective statements.

If error logging is enabled, Firehose also sends data delivery errors to your CloudWatch log
group and streams. For this you must configure log group and log stream names. For log group
and log stream names, see Monitor Amazon Data Firehose Using CloudWatch Logs.

4. In the inline policies, replace amzn-s3-demo-bucket with your Amazon S3 bucket name,
aws-account-id and Region with a valid AWS account number and Region of the resources.

Note

This role gives permission to all databases and tables in your data catalog. If you want,
you can give permissions only to specific tables and databases.

5. After you create the policy, open the IAM console and create an IAM role with AWS service as
the Trusted entity type.

6. For Service or use case, choose Kinesis. For Use case choose Kinesis Firehose.

Grant Firehose access to an Apache Iceberg Tables destination 213

https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

7. On the next page, choose the policy created in the previous step to attach to this role. On
the review page, you will find trust policy already attached to this role giving permissions to
Firehose service to assume this role. When you create the role, Amazon Data Firehose can
assume it to perform required operations on AWS Glue and S3 buckets.

Grant Firehose access to an Amazon Redshift destination

Refer to the following when you are granting access to Amazon Data Firehose when using an
Amazon Redshift destination.

Topics

• IAM role and access policy

• VPC access to an Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup

IAM role and access policy

When you're using an Amazon Redshift destination, Amazon Data Firehose delivers data to your
S3 bucket as an intermediate location. It can optionally use an AWS KMS key you own for data
encryption. Amazon Data Firehose then loads the data from the S3 bucket to your Amazon
Redshift provisioned cluster or Amazon Redshift Serverless workgroup. If error logging is enabled,
Amazon Data Firehose also sends data delivery errors to your CloudWatch log group and streams.
Amazon Data Firehose uses the specified Amazon Redshift user name and password to access your
provisioned cluster or Amazon Redshift Serverless workgroup, and uses an IAM role to access the
specified bucket, key, CloudWatch log group, and streams. You are required to have an IAM role
when creating a Firehose stream.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket and AWS
KMS key. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions,
which grants the bucket owner full access to the objects delivered by Amazon Data Firehose. This
policy also has a statement that allows access to Amazon Kinesis Data Streams. If you don't use
Kinesis Data Streams as your data source, you can remove that statement.

{
"Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",

Grant Firehose access to an Amazon Redshift destination 214

Amazon Data Firehose Developer Guide

 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",

Grant Firehose access to an Amazon Redshift destination 215

Amazon Data Firehose Developer Guide

 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

VPC access to an Amazon Redshift provisioned cluster or Amazon Redshift
Serverless workgroup

If your Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup is in a
virtual private cloud (VPC), it must be publicly accessible with a public IP address. Also, grant
Amazon Data Firehose access to your Amazon Redshift provisioned cluster or Amazon Redshift
Serverless workgroup by unblocking the Amazon Data Firehose IP addresses. Amazon Data
Firehose currently uses one CIDR block for each available Region.

Region CIDR blocks

US East (Ohio) 13.58.135.96/27

US East (N. Virginia) 52.70.63.192/27

US West (N. California) 13.57.135.192/27

Grant Firehose access to an Amazon Redshift destination 216

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Region CIDR blocks

US West (Oregon) 52.89.255.224/27

AWS GovCloud (US-East) 18.253.138.96/27

AWS GovCloud (US-
West)

52.61.204.160/27

Canada (Central) 35.183.92.128/27

Canada West (Calgary) 40.176.98.192/27

Asia Pacific (Hong Kong) 18.162.221.32/27

Asia Pacific (Mumbai) 13.232.67.32/27

Asia Pacific (Hyderabad) 18.60.192.128/27

Asia Pacific (Seoul) 13.209.1.64/27

Asia Pacific (Singapore) 13.228.64.192/27

Asia Pacific (Sydney) 13.210.67.224/27

Asia Pacific (Jakarta) 108.136.221.64/27

Asia Pacific (Tokyo) 13.113.196.224/27

Asia Pacific (Osaka) 13.208.177.192/27

Asia Pacific (Thailand) 43.208.112.96/27

China (Beijing) 52.81.151.32/27

China (Ningxia) 161.189.23.64/27

Europe (Zurich) 16.62.183.32/27

Europe (Frankfurt) 35.158.127.160/27

Europe (Ireland) 52.19.239.192/27

Grant Firehose access to an Amazon Redshift destination 217

Amazon Data Firehose Developer Guide

Region CIDR blocks

Europe (London) 18.130.1.96/27

Europe (Paris) 35.180.1.96/27

Europe (Stockholm) 13.53.63.224/27

Middle East (Bahrain) 15.185.91.0/27

Mexico (Central) 78.12.207.32/27

South America (São
Paulo)

18.228.1.128/27

Europe (Milan) 15.161.135.128/27

Africa (Cape Town) 13.244.121.224/27

Middle East (UAE) 3.28.159.32/27

Israel (Tel Aviv) 51.16.102.0/27

Asia Pacific (Melbourne) 16.50.161.128/27

Asia Pacific (Malaysia) 43.216.58.0/27

For more information about how to unblock IP addresses, see the step Authorize Access to the
Cluster in the Amazon Redshift Getting Started Guide guide.

Grant Firehose access to a public OpenSearch Service destination

When you're using an OpenSearch Service destination, Amazon Data Firehose delivers data to your
OpenSearch Service cluster, and concurrently backs up failed or all documents to your S3 bucket. If
error logging is enabled, Amazon Data Firehose also sends data delivery errors to your CloudWatch
log group and streams. Amazon Data Firehose uses an IAM role to access the specified OpenSearch
Service domain, S3 bucket, AWS KMS key, and CloudWatch log group and streams. You are required
to have an IAM role when creating a Firehose stream.

Grant Firehose access to a public OpenSearch Service destination 218

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html

Amazon Data Firehose Developer Guide

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket,
OpenSearch Service domain, and AWS KMS key. If you do not own the S3 bucket, add
s3:PutObjectAcl to the list of Amazon S3 actions, which grants the bucket owner full access to
the objects delivered by Amazon Data Firehose. This policy also has a statement that allows access
to Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }

Grant Firehose access to a public OpenSearch Service destination 219

Amazon Data Firehose Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "es:DescribeDomain",
 "es:DescribeDomains",
 "es:DescribeDomainConfig",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": [
 "arn:aws:es:region:account-id:domain/domain-name",
 "arn:aws:es:region:account-id:domain/domain-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttpGet"
],
 "Resource": [
 "arn:aws:es:region:account-id:domain/domain-name/_all/_settings",
 "arn:aws:es:region:account-id:domain/domain-name/_cluster/stats",
 "arn:aws:es:region:account-id:domain/domain-name/index-name*/
_mapping/type-name",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes/stats",
 "arn:aws:es:region:account-id:domain/domain-name/_nodes/*/stats",
 "arn:aws:es:region:account-id:domain/domain-name/_stats",
 "arn:aws:es:region:account-id:domain/domain-name/index-name*/_stats",
 "arn:aws:es:region:account-id:domain/domain-name/"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {

Grant Firehose access to a public OpenSearch Service destination 220

Amazon Data Firehose Developer Guide

 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

To learn how to grant Amazon Data Firehose access to an OpenSearch Service cluster in another
account, see the section called “Cross-account delivery to an OpenSearch Service destination”.

Grant Firehose access to an OpenSearch Service destination in a VPC

If your OpenSearch Service domain is in a VPC, make sure you give Amazon Data Firehose the
permissions that are described in the previous section. In addition, you need to give Amazon Data
Firehose the following permissions to enable it to access your OpenSearch Service domain's VPC.

• ec2:DescribeVpcs

• ec2:DescribeVpcAttribute

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• ec2:DescribeNetworkInterfaces

Grant Firehose access to an OpenSearch Service destination in a VPC 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

• ec2:CreateNetworkInterface

• ec2:CreateNetworkInterfacePermission

• ec2:DeleteNetworkInterface

Important

Do not revoke these permissions after you create the Firehose stream. If you revoke
these permissions, your Firehose stream will be degraded or stop delivering data to your
OpenSearch service domain whenever the service attempts to query or update ENIs.

Important

When you specify subnets for delivering data to the destination in a private VPC, make sure
you have enough number of free IP addresses in chosen subnets. If there is no available
free IP address in a specified subnet, Firehose cannot create or add ENIs for the data
delivery in the private VPC, and the delivery will be degraded or fail.

When you create or update your Firehose stream, you specify a security group for Firehose to
use when it sends data to your OpenSearch Service domain. You can use the same security group
that the OpenSearch Service domain uses or a different one. If you specify a different security
group, ensure that it allows outbound HTTPS traffic to the OpenSearch Service domain's security
group. Also ensure that the OpenSearch Service domain's security group allows HTTPS traffic from
the security group you specified when you configured your Firehose stream. If you use the same
security group for both your Firehose stream and the OpenSearch Service domain, make sure the
security group inbound rule allows HTTPS traffic. For more information about security group rules,
see Security group rules in the Amazon VPC documentation.

Grant Firehose access to a public OpenSearch Serverless destination

When you're using an OpenSearch Serverless destination, Amazon Data Firehose delivers data
to your OpenSearch Serverless collection, and concurrently backs up failed or all documents to
your S3 bucket. If error logging is enabled, Amazon Data Firehose also sends data delivery errors
to your CloudWatch log group and streams. Amazon Data Firehose uses an IAM role to access the
specified OpenSearch Serverless collection, S3 bucket, AWS KMS key, and CloudWatch log group
and streams. You are required to have an IAM role when creating a Firehose stream.

Grant Firehose access to a public OpenSearch Serverless destination 222

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Data Firehose Developer Guide

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket,
OpenSearch Serverless domain, and AWS KMS key. If you do not own the S3 bucket, add
s3:PutObjectAcl to the list of Amazon S3 actions, which grants the bucket owner full access to
the objects delivered by Amazon Data Firehose. This policy also has a statement that allows access
to Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }

Grant Firehose access to a public OpenSearch Serverless destination 223

Amazon Data Firehose Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:log-
stream-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 },
 {
 "Effect": "Allow",
 "Action": "aoss:APIAccessAll",
 "Resource": "arn:aws:aoss:region:account-id:collection/collection-id"
 }
]
}

In addition to the policy above, you must also configure Amazon Data Firehose to have the
following minimum permissions assigned in a data access policy:

Grant Firehose access to a public OpenSearch Serverless destination 224

Amazon Data Firehose Developer Guide

[
 {
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/target-collection/target-index"
],
 "Permission":[
 "aoss:WriteDocument",
 "aoss:UpdateIndex",
 "aoss:CreateIndex"
]
 }
],
 "Principal":[
 "arn:aws:sts::account-id:assumed-role/firehose-delivery-role-name/*"
]
 }
]

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Grant Firehose access to an OpenSearch Serverless destination in a VPC

If your OpenSearch Serverless collection is in a VPC, make sure you give Amazon Data Firehose the
permissions that are described in the previous section. In addition, you need to give Amazon Data
Firehose the following permissions to enable it to access your OpenSearch Serverless collection's
VPC.

• ec2:DescribeVpcs

• ec2:DescribeVpcAttribute

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• ec2:DescribeNetworkInterfaces

• ec2:CreateNetworkInterface

• ec2:CreateNetworkInterfacePermission

Grant Firehose access to an OpenSearch Serverless destination in a VPC 225

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

• ec2:DeleteNetworkInterface

Important

Do not revoke these permissions after you create the Firehose stream. If you revoke
these permissions, your Firehose stream will be degraded or stop delivering data to your
OpenSearch service domain whenever the service attempts to query or update ENIs.

Important

When you specify subnets for delivering data to the destination in a private VPC, make sure
you have enough number of free IP addresses in chosen subnets. If there is no available
free IP address in a specified subnet, Firehose cannot create or add ENIs for the data
delivery in the private VPC, and the delivery will be degraded or fail.

When you create or update your Firehose stream, you specify a security group for Firehose to use
when it sends data to your OpenSearch Serverless collection. You can use the same security group
that the OpenSearch Serverless collection uses or a different one. If you specify a different security
group, ensure that it allows outbound HTTPS traffic to the OpenSearch Serverless collection's
security group. Also ensure that the OpenSearch Serverless collection's security group allows
HTTPS traffic from the security group you specified when you configured your Firehose stream.
If you use the same security group for both your Firehose stream and the OpenSearch Serverless
collection, make sure the security group inbound rule allows HTTPS traffic. For more information
about security group rules, see Security group rules in the Amazon VPC documentation.

Grant Firehose access to a Splunk destination

When you're using a Splunk destination, Amazon Data Firehose delivers data to your Splunk HTTP
Event Collector (HEC) endpoint. It also backs up that data to the Amazon S3 bucket that you
specify, and you can optionally use an AWS KMS key that you own for Amazon S3 server-side
encryption. If error logging is enabled, Firehose sends data delivery errors to your CloudWatch log
streams. You can also use AWS Lambda for data transformation.

If you use an AWS load balancer, make sure that it is a Classic Load Balancer or an Application Load
Balancer. Also, enable duration-based sticky sessions with cookie expiration disabled for Classic

Grant Firehose access to a Splunk destination 226

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Data Firehose Developer Guide

Load Balancer and expiration is set to the maximum (7 days) for Application Load Balancer. For
information about how to do this, see Duration-Based Session Stickiness for Classic Load Balancer
or an Application Load Balancer.

You must have an IAM role when you create a Firehose stream. Firehose assumes that IAM role and
gains access to the specified bucket, key, and CloudWatch log group and streams.

Use the following access policy to enable Amazon Data Firehose to access your S3 bucket. If you
don't own the S3 bucket, add s3:PutObjectAcl to the list of Amazon S3 actions, which grants
the bucket owner full access to the objects delivered by Amazon Data Firehose. This policy also
grants Amazon Data Firehose access to CloudWatch for error logging and to AWS Lambda for
data transformation. The policy also has a statement that allows access to Amazon Kinesis Data
Streams. If you don't use Kinesis Data Streams as your data source, you can remove that statement.
Amazon Data Firehose doesn't use IAM to access Splunk. For accessing Splunk, it uses your HEC
token.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [

Grant Firehose access to a Splunk destination 227

https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html

Amazon Data Firehose Developer Guide

 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]

Grant Firehose access to a Splunk destination 228

Amazon Data Firehose Developer Guide

}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Accessing Splunk in VPC

If your Splunk platform is in a VPC, it must be publicly accessible with a public IP address. Also,
grant Amazon Data Firehose access to your Splunk platform by unblocking the Amazon Data
Firehose IP addresses. Amazon Data Firehose currently uses the following CIDR blocks.

Region CIDR blocks

US East (Ohio) 18.216.68.160/27, 18.216.170.64/27, 18.216.17
0.96/27 \

US East (N. Virginia) 34.238.188.128/26, 34.238.188.192/26, 34.238.19
5.0/26

US West (N. California) 13.57.180.0/26

US West (Oregon) 34.216.24.32/27, 34.216.24.192/27, 34.216.24
.224/27

AWS GovCloud (US-East) 18.253.138.192/26

AWS GovCloud (US-
West)

52.61.204.192/26

Asia Pacific (Hong Kong) 18.162.221.64/26

Asia Pacific (Mumbai) 13.232.67.64/26

Asia Pacific (Seoul) 13.209.71.0/26

Asia Pacific (Singapore) 13.229.187.128/26

Asia Pacific (Sydney) 13.211.12.0/26

Asia Pacific (Thailand) 43.208.112.128/26

Accessing Splunk in VPC 229

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

Region CIDR blocks

Asia Pacific (Tokyo) 13.230.21.0/27, 13.230.21.32/27

Canada (Central) 35.183.92.64/26

Canada West (Calgary) 40.176.98.128/26

Europe (Frankfurt) 18.194.95.192/27, 18.194.95.224/27, 18.195.48
.0/27

Europe (Ireland) 34.241.197.32/27, 34.241.197.64/27, 34.241.19
7.96/27

Europe (London) 18.130.91.0/26

Europe (Paris) 35.180.112.0/26

Europe (Spain) 18.100.194.0/26

Europe (Stockholm) 13.53.191.0/26

Middle East (Bahrain) 15.185.91.64/26

Mexico (Central) 78.12.207.64/26

South America (São
Paulo)

18.228.1.192/26

Europe (Milan) 15.161.135.192/26

Africa (Cape Town) 13.244.165.128/26

Asia Pacific (Osaka) 13.208.217.0/26

China (Beijing) 52.81.151.64/26

China (Ningxia) 161.189.23.128/26

Asia Pacific (Jakarta) 108.136.221.128/26

Accessing Splunk in VPC 230

Amazon Data Firehose Developer Guide

Region CIDR blocks

Middle East (UAE) 3.28.159.64/26

Israel (Tel Aviv) 51.16.102.64/26

Europe (Zurich) 16.62.183.64/26

Asia Pacific (Hyderabad) 18.60.192.192/26

Asia Pacific (Melbourne) 16.50.161.192/26

Asia Pacific (Malaysia) 43.216.44.192/26

Ingest VPC flow logs into Splunk using Amazon Data Firehose

To learn more about how to create a VPC flow log subscription, publish to Firehose, and send the
VPC flow logs to a supported destination see Ingest VPC flow logs into Splunk using Amazon Data
Firehose.

Accessing Snowflake or HTTP end point

There is no subset of AWS IP address ranges specific to Amazon Data Firehose when the
destination is HTTP end point or Snowflake public clusters.

To add Firehose to an allow list for public Snowflake clusters or to your public HTTP or HTTPS
endpoints, add all the current AWS IP address ranges to your ingress rules.

Note

Notifications aren't always sourced from IP addresses in the same AWS Region as their
associated topic. You must include the AWS IP address range for all Regions.

Grant Firehose access to a Snowflake destination

When you're using Snowflake as a destination, Firehose delivers data to a Snowflake account using
your Snowflake account URL. It also backs up error data to the Amazon Simple Storage Service
bucket that you specify, and you can optionally use an AWS Key Management Service key that you

Tutorial: Ingest VPC flow logs into Splunk using Amazon Data Firehose 231

https://www.splunk.com/en_us/blog/partners/streamline-your-amazon-vpc-flow-logs-ingestion-to-splunk.html
https://www.splunk.com/en_us/blog/partners/streamline-your-amazon-vpc-flow-logs-ingestion-to-splunk.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html

Amazon Data Firehose Developer Guide

own for Amazon S3 server-side encryption. If error logging is enabled, Firehose sends data delivery
errors to your CloudWatch Logs streams.

You must have an IAM role before you create a Firehose stream. Firehose assumes that IAM role
and gains access to the specified bucket, key, and CloudWatch Logs group and streams. Use the
following access policy to enable Firehose to access your S3 bucket. If you don't own the S3 bucket,
add s3:PutObjectAcl to the list of Amazon Simple Storage Service actions, which grants the
bucket owner full access to the objects delivered by Firehose. This policy also grants Firehose
access to CloudWatch for error logging. The policy also has a statement that allows access to
Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement. Firehose doesn't use IAM to access Snowflake. For accessing Snowflake, it
uses your Snowflake account Url and PrivateLink Vpce Id in the case of a private cluster.

{
"Version": "2012-10-17",
 "Statement":
 [
 {
"Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
"Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {

Grant Firehose access to a Snowflake destination 232

Amazon Data Firehose Developer Guide

"StringEquals": {
"kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
"kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-bucket/prefix*"
 }
 }
 },
 {
"Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
"Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Accessing Snowflake in VPC

If your Snowflake cluster is private link enabled, Firehose will use one of the following VPC
endpoints at time of private link creation to deliver data to your private cluster without going
through public internet. For this, create Snowflake network rules to allow ingress from the
following AwsVpceIds for the AWS Region your cluster is in. For more information, see Creating
network rule in Snowflake User Guide.

Accessing Snowflake in VPC 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.snowflake.com/en/sql-reference/sql/create-network-rule
https://docs.snowflake.com/en/sql-reference/sql/create-network-rule

Amazon Data Firehose Developer Guide

VPC Endpoint Ids to use based on Regions your cluster is in

AWS Region VPCE IDs

US East (Ohio) vpce-0d96cafcd96a50aeb

vpce-0cec34343d48f537b

US East (N. Virginia) vpce-0b4d7e8478e141ba8

vpce-0b75cd681fb507352

vpce-01c03e63820ec00d8

vpce-0c2cfc51dc2882422

vpce-06ca862f019e4e056

vpce-020cda0cfa63f8d1c

vpce-0b80504a1a783cd70

vpce-0289b9ff0b5259a96

vpce-0d7add8628bd69a12

vpce-02bfb5966cc59b2af

vpce-09e707674af878bf2

vpce-049b52e96cc1a2165

vpce-0bb6c7b7a8a86cdbb

vpce-03b22d599f51e80f3

vpce-01d60dc60fc106fe1

vpce-0186d20a4b24ecbef

vpce-0533906401a36e416

vpce-05111fb13d396710e

Accessing Snowflake in VPC 234

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

vpce-0694613f4fbd6f514

vpce-09b21cb25fe4cc4f4

vpce-06029c3550e4d2399

vpce-00961862a21b033da

vpce-01620b9ae33273587

vpce-078cf4ec226880ac9

vpce-0d711bf076ce56381

vpce-066b7e13cbfca6f6e

vpce-0674541252d9ccc26

vpce-03540b88dedb4b000

vpce-0b1828e79ad394b95

vpce-0dc0e6f001fb1a60d

vpce-0d8f82e71a244098a

vpce-00e374d9e3f1af5ce

vpce-0c1e3d6631ddb442f

Accessing Snowflake in VPC 235

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

US West (Oregon) vpce-0f60f72da4cd1e4e7

vpce-0c60d21eb8b1669fd

vpce-01c4e3e29afdafbef

vpce-0cc6bf2a88da139de

vpce-0797e08e169e50662

vpce-033cbe480381b5c0e

vpce-00debbdd8f9eb10a5

vpce-08ec2f386c809e889

vpce-0856d14310857b545

Europe (Frankfurt) vpce-068dbb7d71c9460fb

vpce-0a7a7f095942d4ec9

Europe (Ireland) vpce-06857e59c005a6276

vpce-04390f4f8778b75f2

vpce-011fd2b1f0aa172fd

Asia Pacific (Tokyo) vpce-06369e5258144e68a

vpce-0f2363cdb8926fbe8

Asia Pacific (Singapore) vpce-049cd46cce7a12d52

vpce-0e8965a1a4bdb8941

Asia Pacific (Seoul) vpce-0aa444d9001e1faa1

vpce-04a49d4dcfd02b884

Accessing Snowflake in VPC 236

Amazon Data Firehose Developer Guide

AWS Region VPCE IDs

Asia Pacific (Sydney) vpce-048a60a182c52be63

vpce-03c19949787fd1859

Asia Pacific (Mumbai) vpce-0d68cb822f6f0db68

vpce-0517d32692ffcbde2

Europe (London) vpce-0fd1874a0ba3b9374

vpce-08091b1a85e206029

South America (Sao Paulo) vpce-065169b8144e4f12e

vpce-0493699f0e5762d63

Canada (Central) vpce-07e6ed81689d5271f

vpce-0f53239730541394c

Europe (Paris) vpce-09419680077e6488a

vpce-0ea81ba2c08140c14

Asia Pacific (Osaka) vpce-0a9f003e6a7e38c05

vpce-02886510b897b1c5a

Europe (Stockholm) vpce-0d96410833219025a

vpce-060a32f9a75ba969f

Asia Pacific (Jakarta) vpce-00add4b9a25e5c649

vpce-004ae2de34338a856

Accessing Snowflake in VPC 237

Amazon Data Firehose Developer Guide

Grant Firehose access to an HTTP endpoint destination

You can use Amazon Data Firehose to deliver data to any HTTP endpoint destination. Amazon Data
Firehose also backs up that data to the Amazon S3 bucket that you specify, and you can optionally
use an AWS KMS key that you own for Amazon S3 server-side encryption. If error logging is
enabled, Amazon Data Firehose sends data delivery errors to your CloudWatch log streams. You
can also use AWS Lambda for data transformation.

You are required to have an IAM role when creating a Firehose stream. Amazon Data Firehose
assumes that IAM role and gains access to the specified bucket, key, and CloudWatch log group and
streams.

Use the following access policy to enable Amazon Data Firehose to access the S3 bucket that you
specified for data backup. If you don't own the S3 bucket, add s3:PutObjectAcl to the list of
Amazon S3 actions, which grants the bucket owner full access to the objects delivered by Amazon
Data Firehose. This policy also grants Amazon Data Firehose access to CloudWatch for error logging
and to AWS Lambda for data transformation. The policy also has a statement that allows access to
Amazon Kinesis Data Streams. If you don't use Kinesis Data Streams as your data source, you can
remove that statement.

Important

Amazon Data Firehose doesn't use IAM to access HTTP endpoint destinations owned by
supported third-party service providers, including Datadog, Dynatrace, LogicMonitor,
MongoDB, New Relic, Splunk, or Sumo Logic. For accessing a specified HTTP endpoint
destination owned by a supported third-party service provider, contact that service
provider to obtain the API key or the access key that is required to enable data delivery to
that service from Amazon Data Firehose.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",

Grant Firehose access to an HTTP endpoint destination 238

Amazon Data Firehose Developer Guide

 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:region:account-id:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "s3.region.amazonaws.com"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:s3:arn": "arn:aws:s3:::amzn-s3-demo-
bucket/prefix*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:region:account-id:stream/stream-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],

Grant Firehose access to an HTTP endpoint destination 239

Amazon Data Firehose Developer Guide

 "Resource": [
 "arn:aws:logs:region:account-id:log-group:log-group-name:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": [
 "arn:aws:lambda:region:account-id:function:function-name:function-
version"
]
 }
]
}

For more information about allowing other AWS services to access your AWS resources, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Important

Currently Amazon Data Firehose does NOT support data delivery to HTTP endpoints in a
VPC.

Cross-account delivery from Amazon MSK

When you're creating a Firehose stream from your Firehose account (for example, Account B) and
your source is an MSK cluster in another AWS account (Account A), you must have the following
configurations in place.

Account A:

1. In the Amazon MSK console, choose the provisioned cluster and then choose Properties.

2. Under Network settings, choose Edit and turn on Multi-VPC connectivity.

3. Under Security settings choose Edit cluster policy.

Cross-account delivery from Amazon MSK 240

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Data Firehose Developer Guide

a. If the cluster does not already have a policy configured, check Include Firehose service
principal and Enable Firehose cross-account S3 delivery. The AWS Management Console
will automatically generate a policy with the appropriate permissions.

b. If the cluster already has a policy configured, add the following permissions to the existing
policy:

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::arn:role/mskaasTestDeliveryRole"
 },
 "Action": [
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:cluster/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20" // ARN of the
 cluster
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::arn:role/mskaasTestDeliveryRole"
 },
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:topic/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*"//topic of the
 cluster
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::233450236687:role/mskaasTestDeliveryRole"
 },
 "Action": "kafka-cluster:DescribeGroup",

Cross-account delivery from Amazon MSK 241

Amazon Data Firehose Developer Guide

 "Resource": "arn:aws:kafka:us-east-1:arn:group/DO-NOT-TOUCH-mskaas-
provisioned-privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of
 the cluster
 },
 }

4. Under AWS principal, enter the principal ID from Account B.

5. Under Topic, specify the Apache Kafka topic from which you want your Firehose stream to
ingest data. Once the Firehose stream is created, you cannot update this topic.

6. Choose Save changes

Account B:

1. In the Firehose console, choose Create Firehose stream using Account B.

2. Under Source, choose Amazon Managed Streaming for Apache Kafka.

3. Under Source settings, for the Amazon Managed Streaming for Apache Kafka cluster, enter
the ARN of the Amazon MSK cluster in Account A.

4. Under Topic, specify the Apache Kafka topic from which you want your Firehose stream to
ingest data. Once the Firehose stream is created, you cannot update this topic.

5. In Delivery stream name specify the name for your Firehose stream.

In Account B when you're creating your Firehose stream, you must have an IAM role (created by
default when using the AWS Management Console) that grants the Firehose stream 'read' access to
the cross-account Amazon MSK cluster for the configured topic.

The following is what gets configured by the AWS Management Console:

{
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka-cluster:Connect"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:cluster/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of the cluster
 },

Cross-account delivery from Amazon MSK 242

Amazon Data Firehose Developer Guide

 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:ReadData"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:topic/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/mskaas_test_topic" //topic of the
 cluster
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:DescribeGroup"
],
 "Resource": "arn:aws:kafka:us-east-1:arn:group/DO-NOT-TOUCH-mskaas-provisioned-
privateLink/xxxxxxxxx-2f3a-462a-ba09-xxxxxxxxxx-20/*" //topic of the cluster
 },
 }

Next, you can complete the optional step of configuring record transformation and record format
conversion. For more information, see (Optional) Configure record transformation and format
conversion.

Cross-account delivery to an Amazon S3 destination

You can use the AWS CLI or the Amazon Data Firehose APIs to create a Firehose stream in one AWS
account with an Amazon S3 destination in a different account. The following procedure shows an
example of configuring a Firehose stream owned by account A to deliver data to an Amazon S3
bucket owned by account B.

1. Create an IAM role under account A using steps described in Grant Firehose Access to an
Amazon S3 Destination.

Note

The Amazon S3 bucket specified in the access policy is owned by account B in this case.
Make sure you add s3:PutObjectAcl to the list of Amazon S3 actions in the access

Cross-account delivery to an Amazon S3 destination 243

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3

Amazon Data Firehose Developer Guide

policy, which grants account B full access to the objects delivered by Amazon Data
Firehose. This permission is required for cross account delivery. Amazon Data Firehose
sets the "x-amz-acl" header on the request to "bucket-owner-full-control".

2. To allow access from the IAM role previously created, create an S3 bucket policy under account
B. The following code is an example of the bucket policy. For more information, see Using
Bucket Policies and User Policies.

{

 "Version": "2012-10-17",
 "Id": "PolicyID",
 "Statement": [
 {
 "Sid": "StmtID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountA-id:role/iam-role-name"
 },
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
}

3. Create a Firehose stream under account A using the IAM role that you created in step 1.

Cross-account delivery to an Amazon S3 destination 244

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Data Firehose Developer Guide

Cross-account delivery to an OpenSearch Service destination

You can use the AWS CLI or the Amazon Data Firehose APIs to create a Firehose stream in one AWS
account with an OpenSearch Service destination in a different account. The following procedure
shows an example of how you can create a Firehose stream under account A and configure it to
deliver data to an OpenSearch Service destination owned by account B.

1. Create an IAM role under account A using the steps described in the section called “Grant
Firehose access to a public OpenSearch Service destination”.

2. To allow access from the IAM role that you created in the previous step, create an OpenSearch
Service policy under account B. The following JSON is an example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-A-ID:role/firehose_delivery_role "
 },
 "Action": "es:ESHttpGet",
 "Resource": [
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_all/
_settings",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_cluster/
stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/roletest*/
_mapping/roletest",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes/
stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_nodes/*/
stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/_stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/roletest*/
_stats",
 "arn:aws:es:us-east-1:Account-B-ID:domain/cross-account-cluster/"
]
 }
]
}

Cross-account delivery to an OpenSearch Service destination 245

Amazon Data Firehose Developer Guide

3. Create a Firehose stream under account A using the IAM role that you created in step 1. When
you create the Firehose stream, use the AWS CLI or the Amazon Data Firehose APIs and specify
the ClusterEndpoint field instead of DomainARN for OpenSearch Service.

Note

To create a Firehose stream in one AWS account with an OpenSearch Service destination in
a different account, you must use the AWS CLI or the Amazon Data Firehose APIs. You can't
use the AWS Management Console to create this kind of cross-account configuration.

Using tags to control access

You can use the optional Condition element (or Condition block) in an IAM policy to fine-
tune access to Amazon Data Firehose operations based on tag keys and values. The following
subsections describe how to do this for the different Amazon Data Firehose operations. For more
on the use of the Condition element and the operators that you can use within it, see IAM JSON
Policy Elements: Condition.

CreateDeliveryStream

For the CreateDeliveryStream operation, use the aws:RequestTag condition key. In the
following example, MyKey and MyValue represent the key and corresponding value for a tag. For
more information, see Understand tag basics

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "firehose:CreateDeliveryStream",
 "firehose:TagDeliveryStream"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/MyKey": "MyValue"
 }
 }

Using tags to control access 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Data Firehose Developer Guide

 }]
}

TagDeliveryStream

For the TagDeliveryStream operation, use the aws:TagKeys condition key. In the following
example, MyKey is an example tag key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "MyKey"
 }
 }
 }
]
}

UntagDeliveryStream

For the UntagDeliveryStream operation, use the aws:TagKeys condition key. In the following
example, MyKey is an example tag key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "firehose:UntagDeliveryStream",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "MyKey"
 }
 }
 }

Using tags to control access 247

Amazon Data Firehose Developer Guide

]
}

ListDeliveryStreams

You can't use tag-based access control with ListDeliveryStreams.

Other operations

For all Firehose operations other than CreateDeliveryStream, TagDeliveryStream,
UntagDeliveryStream, and ListDeliveryStreams, use the aws:RequestTag condition key.
In the following example, MyKey and MyValue represent the key and corresponding value for a
tag.

ListDeliveryStreams, use the firehose:ResourceTag condition key to control access based
on the tags on that Firehose stream.

In the following example, MyKey and MyValue represent the key and corresponding value for a
tag. The policy would only apply to Data Firehose streams having a tag named MyKey with a value
of MyValue. For more information about controlling access based on resource tags, see Controlling
access to AWS resources using tags in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "firehose:DescribeDeliveryStream",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "firehose:ResourceTag/MyKey": "MyValue"
 }
 }
 }
]
}

Using tags to control access 248

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Amazon Data Firehose Developer Guide

Authenticate with AWS Secrets Manager in Amazon Data
Firehose

Amazon Data Firehose integrates with AWS Secrets Manager to provide secure access to your
secrets and automate credential rotation. This integration allows Firehose to retrieve a secret
from Secrets Manager at runtime to connect to previously mentioned streaming destinations and
deliver your data streams. With this, your secrets are not visible in plain text during stream creation
workflow either in AWS Management Console or API parameters. It provides a secure practice to
manage your secrets and relieves you from complex credential management activities such as
setting up custom Lambda functions to manage password rotations.

For more information, see the AWS Secrets Manager User Guide.

Topics

• Understand secrets

• Create a secret

• Use the secret

• Rotate the secret

Understand secrets

A secret can be a password, a set of credentials such as a user name and password, an OAuth token,
or other secret information that you store in an encrypted form in Secrets Manager.

For each destination, you must specify the secret key-value pair in the correct JSON format as
shown in the following section. Amazon Data Firehose will fail to connect to your destination if
your secret doesn't have the correct JSON format as per the destination.

Format of secret for databases such as MySQL and PostgreSQL

{
 "username": "<username>",
 "password": "<password>"
}

Format of secret for Amazon Redshift Provisioned cluster and Amazon Redshift Serverless
workgroup

Authenticate with AWS Secrets Manager 249

https://docs.aws.amazon.com/secretsmanager/latest/userguide

Amazon Data Firehose Developer Guide

{
 "username": "<username>",
 "password": "<password>"
}

Format of secret for Splunk

{
 "hec_token": "<hec token>"
}

Format of secret for Snowflake

{
 "user": "<user>",
 "private_key": "<private_key>", // without the begin and end private key, remove
 all spaces and newlines
 "key_passphrase": "<passphrase>" // optional
}

Format of secret for HTTP endpoint, Coralogix, Datadog, Dynatrace, Elastic, Honeycomb,
LogicMonitor, Logz.io, MongoDB Cloud, and New Relic

{
 "api_key": "<apikey>"
}

Create a secret

To create a secret, follow the steps in Create an AWS Secrets Manager secret in the AWS Secrets
Manager User Guide.

Use the secret

We recommend that you use AWS Secrets Manager to store your credentials or keys to connect to
streaming destinations such as Amazon Redshift, HTTP endpoint, Snowflake, Splunk, Coralogix,
Datadog, Dynatrace, Elastic, Honeycomb, LogicMonitor, Logz.io, MongoDB Cloud, and New Relic.

You can configure authentication with Secrets Manager for these destinations through the
AWS Management Console at the time of Firehose stream creation. For more information, see

Create a secret 250

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Data Firehose Developer Guide

Configure destination settings. Alternatively, you can also use the CreateDeliveryStream and
UpdateDestination API operations to configure authentication with Secrets Manager.

Firehose caches the secrets with an encryption and uses them for every connection to destinations.
It refreshes the cache every 10 minutes to ensure that the latest credentials are used.

You can choose to turn off the capability of retrieving secrets from Secrets Manager at any time
during the lifecycle of the stream. If you don’t want to use Secrets Manager to retrieve secrets, you
can use the username/password or API key instead.

Note

Although, there is no additional cost for this feature in Firehose, you are billed for access
and maintenance of Secrets Manager. For more information, see AWS Secrets Manager
pricing page.

Grant access to Firehose to retrieve the secret

For Firehose to retrieve a secret from AWS Secrets Manager, you must provide Firehose the
required permissions to access the secret and the key that encrypts your secret.

When using AWS Secrets Manager to store and retrieve secrets, there are a few different
configuration options depending on where the secret is stored and how it is encrypted.

• If the secret is stored in the same AWS account as your IAM role and it's encrypted with the
default AWS managed key (aws/secretsmanager), the IAM role that Firehose assumes only
needs secretsmanager:GetSecretValue permission on the secret.

// secret role policy
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "Secret ARN"
 }
]
}

Use the secret 251

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://aws.amazon.com/secrets-manager/pricing/

Amazon Data Firehose Developer Guide

For more information on IAM policies, see Permissions policy examples for AWS Secrets Manager.

• If the secret is stored in the same account as the role but encrypted with a customer managed
key (CMK), the role needs both secretsmanager:GetSecretValue and kms:Decrypt
permissions. The CMK policy also needs to allow the IAM role to perform kms:Decrypt.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "Secret ARN"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "KMSKeyARN"
 }
]
}

• If the secret is stored in a different AWS account than your role, and it is encrypted with the
default AWS managed key, this configuration is not possible as Secrets Manager does not allow
cross-account access when secret is encrypted with AWS managed key.

• If the secret is stored in a different account and encrypted with a CMK, IAM role needs
secretsmanager:GetSecretValue permission on the secret and kms:Decrypt permission
on the CMK. The secret's resource policy and the CMK policy in the other account also need to
allow the IAM role the necessary permissions. For more information, see Cross-account access.

Rotate the secret

Rotation is when you periodically update a secret. You can configure AWS Secrets Manager to
automatically rotate the secret for you on a schedule that you specify. This way, you can replace
long-term secrets with short-term ones. This helps to reduce the risk of compromise. For more
information, see Rotate AWS Secrets Manager secrets in the AWS Secrets Manager User Guide.

Rotate the secret 252

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples_cross.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

Amazon Data Firehose Developer Guide

Manage IAM roles through Amazon Data Firehose console

Amazon Data Firehose is a fully managed service that delivers real-time streaming data to
destinations. You can also configure Firehose to transform and convert the format of your data
before delivery. To use these features, you must first provide IAM roles to grant permissions
to Firehose when you create or edit a Firehose stream. Firehose uses this IAM role for all the
permissions that the Firehose stream needs.

For example, consider a scenario where you create a Firehose stream that delivers data to Amazon
S3, and this Firehose stream has Transform source records with AWS Lambda feature enabled. In
this case, you must provide IAM roles to grant Firehose permissions to access the S3 bucket and
invoke the Lambda function, as shown in the following.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": ["lambda:InvokeFunction", "lambda:GetFunctionConfiguration"],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:<lambda function
 name>:<lambda function version>"
 }, {
 "Sid": "s3Permissions",
 "Effect": "Allow",
 "Action": ["s3:AbortMultipartUpload", "s3:GetBucketLocation", "s3:GetObject",
 "s3:ListBucket", "s3:ListBucketMultipartUploads", "s3:PutObject"],
 "Resource": ["arn:aws:s3:::<bucket name>", "arn:aws:s3:::<bucket name>/*"]
 }]
}

Firehose console allows you to choose how you want to provide these roles. You can choose from
one of the following options.

• Choose an existing IAM role

• Create a new IAM role from console

Manage IAM roles through console 253

Amazon Data Firehose Developer Guide

Choose an existing IAM role

You can choose from an existing IAM role. With this option, make sure that the IAM role you choose
has a proper trust policy and permissions required for your source and destination. For more
information, see Controlling access with Amazon Data Firehose.

Create a new IAM role from console

Alternatively, you could also use the Firehose console to create a new role on your behalf.

When Firehose creates an IAM role on your behalf, the role automatically includes all permission
and trust policies that grant the required permissions based on the Firehose stream configuration.

For example, if you didn’t enable Transform source records with AWS Lambda feature then
console generates the following statement in the permission policy.

{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:
%FIREHOSE_POLICY_TEMPLATE_PLACEHOLDER%"
}

Note

It's safe to ignore the policy statements that contain
%FIREHOSE_POLICY_TEMPLATE_PLACEHOLDER% as they don't grant permissions on any
resources.

The console create and edit Firehose stream workflows also create a trust policy and attach it to
the IAM role. The trust policy allows Firehose to assume the IAM role. Following is a example of a
trust policy.

{

Choose an existing IAM role 254

Amazon Data Firehose Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "firehoseAssume",
 "Effect": "Allow",
 "Principal": {
 "Service": "firehose.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]
}

Important

• You should avoid using the same console-managed IAM role for multiple Firehose
streams. Otherwise, the IAM role could become overly permissive or result in errors.

• To use different policy statements within a permission policy from a console-managed
IAM role, you can create your own IAM role, and copy the policy statements to a
permission policy attached to the new role. To attach the role to the Firehose stream,
select the Choose existing IAM role option in the Service access.

• Console manages any IAM role that contains the string service-role in its ARN. When you
choose the existing IAM role option, make sure to select an IAM role without the service-
role string in its ARN so that console doesn’t make any changes to it.

Steps to create an IAM role from console

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose Create Firehose stream.

3. Choose a source and destination. For more information, see Tutorial: Create a Firehose stream
from console.

4. Choose the destination settings. For more information, see Configure destination settings.

5. Under Advanced settings, for Service access, choose Create or update IAM role.

Note

This is a default option. To use an existing role, select the Choose existing IAM role
option. Firehose console won’t make any changes to your own role.

Create a new IAM role from console 255

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

6. Choose Create Firehose stream.

Edit IAM role from console

When you edit a Firehose stream, Firehose updates the corresponding permission policy
accordingly to reflect the configuration and permission changes.

For example, when you edit the Firehose stream and enable Transform source records with AWS
Lambda feature using the latest version of Lambda function as exampleLambdaFunction, you
get the following policy statement in the permission policy.

{
 "Sid": "lambdaProcessing",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunctionConfiguration"
],
 "Resource": "arn:aws:lambda:us-east-1:<account id>:function:exampleLambdaFunction:
$LATEST"
}

Important

A console-managed IAM role is designed to be autonomous. We don't recommend that you
modify the permission policy or trust policy outside of the console.

Steps to edit IAM role from console

1. Open the Firehose console at https://console.aws.amazon.com/firehose/.

2. Choose Firehose streams and choose the name of a Firehose stream you want to update.

3. On the Configuration tab, in the Server access section, choose Edit.

4. Update the IAM role option.

Note

By default, the console always updates an IAM role with the pattern service-role in its
ARN. When you choose the existing IAM role option, make sure to select an IAM role

Edit IAM role from console 256

https://console.aws.amazon.com/firehose/

Amazon Data Firehose Developer Guide

without the service-role string in its ARN so that console doesn’t make any changes to
it.

5. Choose Save changes.

Understand compliance for Amazon Data Firehose

Third-party auditors assess the security and compliance of Amazon Data Firehose as part of
multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Data Firehose is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. If your use
of Data Firehose is subject to compliance with standards such as HIPAA, PCI, or FedRAMP, AWS
provides resources to help:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Data Firehose

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with

Compliance validation 257

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Data Firehose Developer Guide

low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Data Firehose offers several features to help support
your data resiliency and backup needs.

Disaster recovery

Amazon Data Firehose runs in a serverless mode, and takes care of host degradations, Availability
Zone availability, and other infrastructure related issues by performing automatic migration. When
this happens, Amazon Data Firehose ensures that the Firehose stream is migrated without any loss
of data.

Understand infrastructure security in Amazon Data Firehose

As a managed service, Amazon Data Firehose is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Firehose through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Disaster recovery 258

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

Amazon Data Firehose Developer Guide

Note

For outgoing HTTPS requests, Amazon Data Firehose uses an HTTP library that
automatically selects the highest TLS protocol version supported at the destination side.

Using Amazon Data Firehose with AWS PrivateLink

You can use an interface VPC endpoint (AWS PrivateLink) to access Amazon Data Firehose from
your VPC without requiring an Internet Gateway or NAT Gateway. Interface VPC endpoints don't
require an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables private
communication between AWS services using an elastic network interface with private IPs in your
Amazon VPC. For more information, see Amazon Virtual Private Cloud.

Using interface VPC endpoints (AWS PrivateLink) for Firehose

To get started, create an interface VPC endpoint in order for your Amazon Data Firehose traffic
from your Amazon VPC resources to start flowing through the interface VPC endpoint. When you
create an endpoint, you can attach an endpoint policy to it that controls access to Amazon Data
Firehose. For more about using policies to control access from a VPC endpoint to Amazon Data
Firehose, see Controlling Access to Services with VPC Endpoints.

The following example shows how you can set up an AWS Lambda function in a VPC and create
a VPC endpoint to allow the function to communicate securely with the Amazon Data Firehose
service. In this example, you use a policy that allows the Lambda function to list the Firehose
streams in the current Region but not to describe any Firehose stream.

Create a VPC endpoint

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the VPC Dashboard choose Endpoints.

3. Choose Create Endpoint.

4. In the list of service names, choose com.amazonaws.your_region.kinesis-firehose.

5. Choose the VPC and one or more subnets in which to create the endpoint.

6. Choose one or more security groups to associate with the endpoint.

Using Firehose with AWS PrivateLink 259

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Data Firehose Developer Guide

7. For Policy, choose Custom and paste the following policy:

{
 "Statement": [
 {
 "Sid": "Allow-only-specific-PrivateAPIs",
 "Principal": "*",
 "Action": [
 "firehose:ListDeliveryStreams"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Allow-only-specific-PrivateAPIs",
 "Principal": "*",
 "Action": [
 "firehose:DescribeDeliveryStream"
],
 "Effect": "Deny",
 "Resource": [
 "*"
]
 }
]
}

8. Choose Create endpoint.

Create an IAM role to use with the Lambda function

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left pane, chose Roles and then choose Create role.

3. Under Select type of trusted entity, leave the default selection AWS service.

4. Under Choose the service that will use this role, choose Lambda.

5. Choose Next: Permissions.

6. In the list of policies, search for and add the two policies named
AWSLambdaVPCAccessExecutionRole and AmazonDataFirehoseReadOnlyAccess.

Using Firehose with AWS PrivateLink 260

https://console.aws.amazon.com/iam/

Amazon Data Firehose Developer Guide

Important

This is an example. You might need stricter policies for your production environment.

7. Choose Next: Tags. You don't need to add tags for the purpose of this exercise. Choose Next:
Review.

8. Enter a name for the role, then choose Create role.

Create a Lambda function inside the VPC

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Author from scratch.

4. Enter a name for the function, then set Runtime to Python 3.9 or higher.

5. Under Permissions, expand Choose or create an execution role.

6. In the Execution role list, choose Use an existing role.

7. In the Existing role list, choose the role you created above.

8. Choose Create function.

9. Under Function code, paste the following code.

 import json
 import boto3
 import os
 from botocore.exceptions import ClientError

 def lambda_handler(event, context):
 REGION = os.environ['AWS_REGION']
 client = boto3.client(
 'firehose',
 REGION

)
 print("Calling list_delivery_streams with ListDeliveryStreams allowed
 policy.")
 delivery_stream_request = client.list_delivery_streams()
 print("Successfully returned list_delivery_streams request %s." % (

Using Firehose with AWS PrivateLink 261

https://console.aws.amazon.com/lambda/

Amazon Data Firehose Developer Guide

 delivery_stream_request
))
 describe_access_denied = False
 try:
 print("Calling describe_delivery_stream with DescribeDeliveryStream
 denied policy.")
 delivery_stream_info =
 client.describe_delivery_stream(DeliveryStreamName='test-describe-denied')
 except ClientError as e:
 error_code = e.response['Error']['Code']
 print ("Caught %s." % (error_code))
 if error_code == 'AccessDeniedException':
 describe_access_denied = True

 if not describe_access_denied:
 raise
 else:
 print("Access denied test succeeded.")

10. Under Basic settings, set the timeout to 1 minute.

11. Under Network, choose the VPC where you created the endpoint above, then choose the
subnets and security group that you associated with the endpoint when you created it.

12. Near the top of the page, choose Save.

13. Choose Test.

14. Enter an event name, then choose Create.

15. Choose Test again. This causes the function to run. After the execution result appears, expand
Details and compare the log output to the function code. Successful results show a list of the
Firehose streams in the Region, as well as the following output:

Calling describe_delivery_stream.

AccessDeniedException

Access denied test succeeded.

Supported AWS Regions

Interface VPC endpoints are currently supported within the following regions.

• US East (Ohio)

Using Firehose with AWS PrivateLink 262

Amazon Data Firehose Developer Guide

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Thailand)

• Asia Pacific (Tokyo)

• Asia Pacific (Hong Kong)

• Canada (Central)

• Canada West (Calgary)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Mexico (Central)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

• Europe (Spain)

• Middle East (UAE)

• Asia Pacific (Jakarta)

• Asia Pacific (Osaka)

• Israel (Tel Aviv)

• Asia Pacific (Malaysia)

Using Firehose with AWS PrivateLink 263

Amazon Data Firehose Developer Guide

Implement security best practices for Amazon Data Firehose

Amazon Data Firehose provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Amazon
Data Firehose resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Use IAM roles

Producer and client applications must have valid credentials to access Firehose streams, and
your Firehose stream must have valid credentials to access destinations. You should not store
AWS credentials directly in a client application or in an Amazon S3 bucket. These are long-term
credentials that are not automatically rotated and could have a significant business impact if they
are compromised.

Instead, you should use an IAM role to manage temporary credentials for your producer and client
applications to access Firehose streams. When you use a role, you don't have to use long-term
credentials (such as a user name and password or access keys) to access other resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Implement server-side encryption in dependent resources

Data at rest and data in transit can be encrypted in Amazon Data Firehose. For more information,
see Data protection in Amazon Data Firehose.

Implement security best practices 264

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html

Amazon Data Firehose Developer Guide

Use CloudTrail to monitor API calls

Amazon Data Firehose is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon Data Firehose.

Using the information collected by CloudTrail, you can determine the request that was made to
Amazon Data Firehose, the IP address from which the request was made, who made the request,
when it was made, and additional details.

For more information, see the section called “Log Firehose API calls”.

Use CloudTrail to monitor API calls 265

Amazon Data Firehose Developer Guide

Monitor Amazon Data Firehose

You can monitor Amazon Data Firehose using the following features:

Topics

• Implement best practices with CloudWatch Alarms

• Monitor Amazon Data Firehose with CloudWatch metrics

• Access CloudWatch Metrics for Amazon Data Firehose

• Monitor Amazon Data Firehose Using CloudWatch Logs

• Access CloudWatch logs for Amazon Data Firehose

• Monitor Kinesis Agent health

• Log Amazon Data Firehose API calls with AWS CloudTrail

Implement best practices with CloudWatch Alarms

Add CloudWatch alarms for when the following metrics exceed the buffering limit (a maximum of
15 minutes).

• DeliveryToS3.DataFreshness

• DeliveryToIceberg.DataFreshness

• DeliveryToSplunk.DataFreshness

• DeliveryToAmazonOpenSearchService.DataFreshness

• DeliveryToAmazonOpenSearchServerless.DataFreshness

• DeliveryToHttpEndpoint.DataFreshness

Also, create alarms based on the following metric math expressions.

• IncomingBytes (Sum per 5 Minutes) / 300 approaches a percentage of
BytesPerSecondLimit.

• IncomingRecords (Sum per 5 Minutes) / 300 approaches a percentage of
RecordsPerSecondLimit.

• IncomingPutRequests (Sum per 5 Minutes) / 300 approaches a percentage of
PutRequestsPerSecondLimit.

Implement best practices with CloudWatch Alarms 266

Amazon Data Firehose Developer Guide

Another metric for which we recommend an alarm is ThrottledRecords.

For information about troubleshooting when alarms go to the ALARM state, see Troubleshoot errors.

Monitor Amazon Data Firehose with CloudWatch metrics

Important

Be sure to enable alarms on all CloudWatch metrics that belong to your destination in
order to identify errors in timely manner.

Amazon Data Firehose integrates with Amazon CloudWatch metrics so that you can collect, view,
and analyze CloudWatch metrics for your Firehose streams. For example, you can monitor the
IncomingBytes and IncomingRecords metrics to keep track of data ingested into Amazon Data
Firehose from data producers.

Amazon Data Firehose collects and publishes CloudWatch metrics every minute. However, if bursts
of incoming data occur only for a few seconds, they may not be fully captured or visible in the one-
minute metrics. This is because CloudWatch metrics are aggregated from Amazon Data Firehose
over one-minute intervals.

The metrics collected for Firehose streams are free of charge. For information about Kinesis agent
metrics, see Monitor Kinesis Agent health.

Topics

• CloudWatch metrics for dynamic partitioning

• CloudWatch metrics for data delivery

• Data ingestion metrics

• API-level CloudWatch metrics

• Data Transformation CloudWatch Metrics

• CloudWatch Logs Decompression Metrics

• Format Conversion CloudWatch Metrics

• Server-Side Encryption (SSE) CloudWatch Metrics

• Dimensions for Amazon Data Firehose

• Amazon Data Firehose Usage Metrics

Monitoring with CloudWatch Metrics 267

Amazon Data Firehose Developer Guide

CloudWatch metrics for dynamic partitioning

If dynamic partitioning is enabled, the AWS/Firehose namespace includes the following metrics.

Metric Description

ActivePartitionsLimit The maximum number of active partitions that a
Firehose stream processes before sending data to the
error bucket.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PartitionCount The number of partitions that are being processed, in
other words, the active partition count. This number
varies between 1 and the partition count limit of 500
(default).

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PartitionCountExceeded This metric indicates if you are exceeding the partition
count limit. It emits 1 or 0 based on whether limit is
breached or not.

JQProcessing.Duration Returns the amount of time it took to execute JQ
expression in the JQ Lambda function.

Units: Milliseconds

PerPartitionThroughput Indicates the throughput that is being processed per
partition. This metric enables you to monitor the per
partition throughput.

Units: StandardUnit.BytesSecond

DeliveryToS3.ObjectCount Indicates the number of objects that are being delivered
to your S3 bucket.

CloudWatch metrics for dynamic partitioning 268

Amazon Data Firehose Developer Guide

Metric Description

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

CloudWatch metrics for data delivery

The AWS/Firehose namespace includes the following service-level metrics. If you see
small drops in the average for BackupToS3.Success, DeliveryToS3.Success,
DeliveryToSplunk.Success, DeliveryToAmazonOpenSearchService.Success, or
DeliveryToRedshift.Success, that doesn't indicate that there's data loss. Amazon Data
Firehose retries delivery errors and doesn't move forward until the records are successfully
delivered either to the configured destination or to the backup S3 bucket.

Topics

• Delivery to OpenSearch Service

• Delivery to OpenSearch Serverless

• Delivery to Amazon Redshift

• Delivery to Amazon S3

• Delivery to Snowflake

• Delivery to Splunk

• Delivery to HTTP Endpoints

Delivery to OpenSearch Service

Metric Description

DeliveryToAmazonOp
enSearchService.Bytes

The number of bytes indexed to OpenSearch Service
over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

CloudWatch metrics for data delivery 269

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToAmazonOp
enSearchService.Da
taFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Service.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Seconds

DeliveryToAmazonOp
enSearchService.Records

The number of records indexed to OpenSearch Service
over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToAmazonOp
enSearchService.Success

The sum of the successfully indexed records.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket. Amazon Data Firehose emits this metric only
when you enable backup for all documents.

Units: Seconds

CloudWatch metrics for data delivery 270

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands.
Amazon Data Firehose always emits this metric
regardless of whether backup is enabled for failed
documents only or for all documents.

DeliveryToAmazonOp
enSearchService.Au
thFailure

Authentication/authorization error. Verify the OS/ES
cluster policy and role permissions.

0 indicates that there is no issue. 1 indicates authentic
ation failure.

DeliveryToAmazonOp
enSearchService.De
liveryRejected

Delivery rejected error. Verify the OS/ES cluster policy
and role permissions.

0 indicates that there is no issue. 1 indicates that there's
a delivery failure.

Delivery to OpenSearch Serverless

Metric Description

DeliveryToAmazonOp
enSearchServerless.Bytes

The number of bytes indexed to OpenSearch Serverless
over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

CloudWatch metrics for data delivery 271

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToAmazonOp
enSearchServerless
.DataFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Serverless.

Units: Seconds

DeliveryToAmazonOp
enSearchServerless
.Records

The number of records indexed to OpenSearch Serverles
s over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToAmazonOp
enSearchServerless
.Success

The sum of the successfully indexed records.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket. Amazon Data Firehose emits this metric only
when you enable backup for all documents.

Units: Seconds

CloudWatch metrics for data delivery 272

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. Amazon Data Firehose emits this
metric only when you enable backup for all documents.

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands.
Amazon Data Firehose always emits this metric
regardless of whether backup is enabled for failed
documents only or for all documents.

DeliveryToAmazonOp
enSearchServerless
.AuthFailure

Authentication/authorization error. Verify the OS/ES
cluster policy and role permissions.

0 indicates that there is no issue. 1 indicates that there is
an authentication failure.

DeliveryToAmazonOp
enSearchServerless
.DeliveryRejected

Delivery rejected error. Verify the OS/ES cluster policy
and role permissions.

0 indicates that there is no issue. 1 indicates that there is
a delivery failure.

Delivery to Amazon Redshift

Metric Description

DeliveryToRedshift.Bytes The number of bytes copied to Amazon Redshift over
the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToRedshift
.Records

The number of records copied to Amazon Redshift over
the specified time period.

CloudWatch metrics for data delivery 273

Amazon Data Firehose Developer Guide

Metric Description

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToRedshift
.Success

The sum of successful Amazon Redshift COPY
commands.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands.

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when backup to Amazon S3 is enabled.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

CloudWatch metrics for data delivery 274

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when backup to Amazon S3 is enabled.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when backup to Amazon S3 is
enabled.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for
backup. Amazon Data Firehose emits this metric when
backup to Amazon S3 is enabled.

Delivery to Amazon S3

The metrics in the following table are related to delivery to Amazon S3 when it is the main
destination of the Firehose stream.

Metric Description

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

CloudWatch metrics for data delivery 275

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands.

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when backup is enabled (which is only
possible when data transformation is also enabled).

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when backup is enabled (which is only possible
when data transformation is also enabled).

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

CloudWatch metrics for data delivery 276

Amazon Data Firehose Developer Guide

Metric Description

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when backup is enabled
(which is only possible when data transformation is also
enabled).

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for
backup. Amazon Data Firehose emits this metric when
backup is enabled (which is only possible when data
transformation is also enabled).

Delivery to Snowflake

Metric Description

DeliveryToSnowflake.Bytes The number of bytes delivered to Snowflake over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToSnowflak
e.DataFreshness

Age (from getting into Firehose to now) of the oldest
record in Firehose. Any record older than this age has
been delivered to Snowflake. Note that it can take a few
seconds to commit data to Snowflake after Firehose
insert call is successful. For the time it takes to commit
data to Snowflake, refer to the DeliveryToSnowflak
e.DataCommitLatency metric.

Statistics: Minimum, Maximum, Average, Samples

CloudWatch metrics for data delivery 277

Amazon Data Firehose Developer Guide

Metric Description

Units: Seconds

DeliveryToSnowflak
e.DataCommitLatency

The time it takes for the data to be committed to
Snowflake after Firehose inserted records successfully.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToSnowflak
e.Records

The number of records delivered to Snowflake over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToSnowflak
e.Success

The sum of successful insert calls made to Snowflake.

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period. This metric is only available when
delivery to Snowflake fails and Firehose attempts to
backup failed data to S3.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period. This metric is only available when
delivery to Snowflake fails and Firehose attempts to
backup failed data to S3.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

CloudWatch metrics for data delivery 278

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.Success The sum of successful Amazon S3 put commands. This
metric is only available when delivery to Snowflake fails
and Firehose attempts to backup failed data to S3.

BackupToS3.DataFreshness Age (from into Firehose to now) of the oldest record in
Firehose. Any record older than this age is backed up to
the Amazon S3 bucket. This metric is available when the
Firehose stream is configured to back up all data.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. This metric is
available when the Firehose stream is configured to back
up all data.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units:Count

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. This metric is available
when the Firehose stream is configured to back up all
data.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units:Count

BackupToS3.Success The sum of successful Amazon S3 put commands for
backup. Firehose emits this metric when the Firehose
stream is configured to back up all data.

CloudWatch metrics for data delivery 279

Amazon Data Firehose Developer Guide

Delivery to Splunk

Metric Description

DeliveryToSplunk.Bytes The number of bytes delivered to Splunk over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToSplunk.D
ataAckLatency

The approximate duration it takes to receive an
acknowledgement from Splunk after Amazon Data
Firehose sends it data. The increasing or decreasing
trend for this metric is more useful than the absolute
approximate value. Increasing trends can indicate slower
indexing and acknowledgement rates from Splunk
indexers.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToSplunk.D
ataFreshness

Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to Splunk.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToSplunk.Records The number of records delivered to Splunk over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToSplunk.Success The sum of the successfully indexed records.

CloudWatch metrics for data delivery 280

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.Success The sum of successful Amazon S3 put commands. This
metric is emitted when backup to Amazon S3 is enabled.

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when the Firehose stream is configured
to back up all documents.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this
metric when the Firehose stream is configured to back
up all documents.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when the Firehose stream is
configured to back up all documents.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for
backup. Amazon Data Firehose emits this metric
when the Firehose stream is configured to back up all
documents.

CloudWatch metrics for data delivery 281

Amazon Data Firehose Developer Guide

Delivery to HTTP Endpoints

Metric Description

DeliveryToHttpEndp
oint.Bytes

The number of bytes delivered successfully to the HTTP
endpoint.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToHttpEndp
oint.Records

The number of records delivered successfully to the
HTTP endpoint.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Counts

DeliveryToHttpEndp
oint.DataFreshness

Age of the oldest record in Amazon Data Firehose.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToHttpEndp
oint.Success

The sum of all successful data delivery requests to the
HTTP endpoint.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToHttpEndp
oint.ProcessedBytes

The number of attempted processed bytes, including
 retries.

DeliveryToHttpEndp
oint.ProcessedRecords

The number of attempted records including retries.

Data ingestion metrics

Topics

Data ingestion metrics 282

Amazon Data Firehose Developer Guide

• Data ingestion through Kinesis Data Streams

• Data ingestion through Direct PUT

• Data ingestion from MSK

Data ingestion through Kinesis Data Streams

Metric Description

DataReadFromKinesi
sStream.Bytes

When the data source is a Kinesis data stream, this
metric indicates the number of bytes read from that
data stream. This number includes rereads due to
failovers.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DataReadFromKinesi
sStream.Records

When the data source is a Kinesis data stream, this
metric indicates the number of records read from that
data stream. This number includes rereads due to
failovers.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ThrottledDescribeStream The total number of times the DescribeStream
operation is throttled when the data source is a Kinesis
data stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ThrottledGetRecords The total number of times the GetRecords operation
is throttled when the data source is a Kinesis data
stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Data ingestion metrics 283

Amazon Data Firehose Developer Guide

Metric Description

Units: Count

ThrottledGetShardIterator The total number of times the GetShardIterator
operation is throttled when the data source is a Kinesis
data stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

KinesisMillisBehindLatest When the data source is a Kinesis data stream, this
metric indicates the number of milliseconds that the last
read record is behind the newest record in the Kinesis
data stream.

Statistics: Minimum, Maximum, Average, Samples

Units: Millisecond

Data ingestion through Direct PUT

Metric Description

BackupToS3.Bytes The number of bytes delivered to Amazon S3 for backup
over the specified time period. Amazon Data Firehose
emits this metric when data transformation is enabled
for Amazon S3 or Amazon Redshift destinations.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

BackupToS3.DataFreshness Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to the Amazon
S3 bucket for backup. Amazon Data Firehose emits this

Data ingestion metrics 284

Amazon Data Firehose Developer Guide

Metric Description

metric when data transformation is enabled for Amazon
S3 or Amazon Redshift destinations.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

BackupToS3.Records The number of records delivered to Amazon S3 for
backup over the specified time period. Amazon Data
Firehose emits this metric when data transformation is
enabled for Amazon S3 or Amazon Redshift destinati
ons.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

BackupToS3.Success Sum of successful Amazon S3 put commands for
backup. Amazon Data Firehose emits this metric when
data transformation is enabled for Amazon S3 or
Amazon Redshift destinations.

BytesPerSecondLimit The current maximum number of bytes per second
that a Firehose stream can ingest before throttling. To
request an increase to this limit, go to the AWS Support
Center and choose Create case, then choose Service
limit increase.

DeliveryToAmazonOp
enSearchService.Bytes

The number of bytes indexed to OpenSearch Service
over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

Data ingestion metrics 285

https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToAmazonOp
enSearchService.Da
taFreshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose.
Any record older than this age has been delivered to
OpenSearch Service.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToAmazonOp
enSearchService.Records

The number of records indexed to OpenSearch Service
over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToAmazonOp
enSearchService.Success

The sum of the successfully indexed records.

DeliveryToRedshift.Bytes The number of bytes copied to Amazon Redshift over
the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToRedshift
.Records

The number of records copied to Amazon Redshift over
the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToRedshift
.Success

The sum of successful Amazon Redshift COPY
commands.

Data ingestion metrics 286

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToS3.Bytes The number of bytes delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DeliveryToS3.DataF
reshness

The age (from getting into Amazon Data Firehose to
now) of the oldest record in Amazon Data Firehose. Any
record older than this age has been delivered to the S3
bucket.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToS3.Records The number of records delivered to Amazon S3 over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToS3.Success The sum of successful Amazon S3 put commands.

DeliveryToSplunk.Bytes The number of bytes delivered to Splunk over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

Data ingestion metrics 287

Amazon Data Firehose Developer Guide

Metric Description

DeliveryToSplunk.D
ataAckLatency

The approximate duration it takes to receive an
acknowledgement from Splunk after Amazon Data
Firehose sends it data. The increasing or decreasing
trend for this metric is more useful than the absolute
approximate value. Increasing trends can indicate slower
indexing and acknowledgement rates from Splunk
indexers.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToSplunk.D
ataFreshness

Age (from getting into Amazon Data Firehose to now) of
the oldest record in Amazon Data Firehose. Any record
older than this age has been delivered to Splunk.

Statistics: Minimum, Maximum, Average, Samples

Units: Seconds

DeliveryToSplunk.Records The number of records delivered to Splunk over the
specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DeliveryToSplunk.Success The sum of the successfully indexed records.

IncomingBytes The number of bytes ingested successfully into the
Firehose stream over the specified time period. Data
ingestion could be throttled when it exceeds one of
the Firehose stream limits. Throttled data will not be
counted for IncomingBytes .

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

Data ingestion metrics 288

Amazon Data Firehose Developer Guide

Metric Description

IncomingPutRequests The number of successful PutRecord and PutRecord
Batch requests over a specified period of time.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

IncomingRecords The number of records ingested successfully into the
Firehose stream over the specified time period. Data
ingestion could be throttled when it exceeds one of
the Firehose stream limits. Throttled data will not be
counted for IncomingRecords .

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

RecordsPerSecondLimit The current maximum number of records per second
that a Firehose stream can ingest before throttling.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ThrottledRecords The number of records that were throttled because data
ingestion exceeded one of the Firehose stream limits.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Data ingestion from MSK

Metric Description

DataReadFromSource
.Records

The number of records read from the source Kafka
Topic.

Data ingestion metrics 289

Amazon Data Firehose Developer Guide

Metric Description

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

DataReadFromSource.Bytes The number of bytes read from the source Kafka Topic.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

SourceThrottled.Delay The amount of time that the source Kafka cluster is
delayed in returning the records from the source Kafka
Topic.

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

BytesPerSecondLimit Current limit of throughput at which Firehose is going to
read from each partition of the source Kafka Topic.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes/sec

KafkaOffsetLag The difference between the largest offset of the record
that Firehose has read from the source Kafka Topic and
the largest offset of the record available from the source
Kafka Topic.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

FailedValidation.Records The number of records that failed record validation.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Data ingestion metrics 290

Amazon Data Firehose Developer Guide

Metric Description

FailedValidation.Bytes The number of bytes that failed record validation.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

DataReadFromSource
.Backpressured

Indicates that a Firehose stream is delayed in reading
records from the source partition either because
BytesPerSecondLimit per partition has exceeded or that
the normal flow of delivery is slow or has stopped

Units: Boolean

API-level CloudWatch metrics

The AWS/Firehose namespace includes the following API-level metrics.

Metric Description

DescribeDeliverySt
ream.Latency

The time taken per DescribeDeliveryStream
operation, measured over the specified time period.

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

DescribeDeliverySt
ream.Requests

The total number of DescribeDeliveryStream
requests.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ListDeliveryStream
s.Latency

The time taken per ListDeliveryStream operation
, measured over the specified time period.

Statistics: Minimum, Maximum, Average, Samples

API-level CloudWatch metrics 291

Amazon Data Firehose Developer Guide

Metric Description

Units: Milliseconds

ListDeliveryStream
s.Requests

The total number of ListFirehose requests.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PutRecord.Bytes The number of bytes put to the Firehose stream using
PutRecord over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

PutRecord.Latency The time taken per PutRecord operation, measured
over the specified time period.

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

PutRecord.Requests The total number of PutRecord requests, which is
equal to total number of records from PutRecord
operations.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PutRecordBatch.Bytes The number of bytes put to the Firehose stream using
PutRecordBatch over the specified time period.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

API-level CloudWatch metrics 292

Amazon Data Firehose Developer Guide

Metric Description

PutRecordBatch.Latency The time taken per PutRecordBatch operation,
measured over the specified time period.

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

PutRecordBatch.Records The total number of records from PutRecordBatch
operations.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PutRecordBatch.Requests The total number of PutRecordBatch requests.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

PutRequestsPerSecondLimit The maximum number of put requests per second
that a Firehose stream can handle before throttling.
This number includes PutRecord and PutRecordBatch
requests.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ThrottledDescribeStream The total number of times the DescribeStream
operation is throttled when the data source is a Kinesis
data stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

API-level CloudWatch metrics 293

Amazon Data Firehose Developer Guide

Metric Description

ThrottledGetRecords The total number of times the GetRecords operation
is throttled when the data source is a Kinesis data
stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ThrottledGetShardIterator The total number of times the GetShardIterator
operation is throttled when the data source is a Kinesis
data stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

UpdateDeliveryStre
am.Latency

The time taken per UpdateDeliveryStream
operation, measured over the specified time period.

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

UpdateDeliveryStre
am.Requests

The total number of UpdateDeliveryStream
requests.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Data Transformation CloudWatch Metrics

If data transformation with Lambda is enabled, the AWS/Firehose namespace includes the
following metrics.

Data Transformation CloudWatch Metrics 294

Amazon Data Firehose Developer Guide

Metric Description

ExecutePr
ocessing.
Duration

The time it takes for each Lambda function invocation performed by
Firehose.

Units: Milliseconds

ExecutePr
ocessing.
Success

The sum of the successful Lambda function invocations over the sum of
the total Lambda function invocations.

SucceedPr
ocessing.
Records

The number of successfully processed records over the specified time
period.

Units: Count

SucceedPr
ocessing.Bytes

The number of successfully processed bytes over the specified time
period.

Units: Bytes

CloudWatch Logs Decompression Metrics

If decompression is enabled for CloudWatch Logs delivery, the AWS/Firehose namespace includes
the following metrics.

Metric Description

OutputDecompressed
Bytes.Success

Successful decompressed data in bytes

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

OutputDecompressed
Bytes.Failed

Failed decompressed data in bytes

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

CloudWatch Logs Decompression Metrics 295

Amazon Data Firehose Developer Guide

Metric Description

OutputDecompressed
Records.Success

Number of successful decompressed records

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

OutputDecompressed
Records.Failed

Number of failed decompressed records

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Format Conversion CloudWatch Metrics

If format conversion is enabled, the AWS/Firehose namespace includes the following metrics.

Metric Description

SucceedCo
nversion.
Records

The number of successfully converted records.

Units: Count

SucceedCo
nversion.Bytes

The size of the successfully converted records.

Units: Bytes

FailedCon
version.R
ecords

The number of records that could not be converted.

Units: Count

FailedCon
version.Bytes

The size of the records that could not be converted.

Units: Bytes

Server-Side Encryption (SSE) CloudWatch Metrics

The AWS/Firehose namespace includes the following metrics that are related to SSE.

Format Conversion CloudWatch Metrics 296

Amazon Data Firehose Developer Guide

Metric Description

KMSKeyAccessDenied The number of times the service encounters a
KMSAccessDeniedException for the Firehose
stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

KMSKeyDisabled The number of times the service encounters a
KMSDisabledException for the Firehose stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

KMSKeyInvalidState The number of times the service encounters a
KMSInvalidStateException for the Firehose
stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

KMSKeyNotFound The number of times the service encounters a
KMSNotFoundException for the Firehose stream.

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Dimensions for Amazon Data Firehose

To filter metrics by Firehose stream, use the DeliveryStreamName dimension.

Amazon Data Firehose Usage Metrics

You can use CloudWatch usage metrics to provide visibility into your account's usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

Dimensions for Amazon Data Firehose 297

Amazon Data Firehose Developer Guide

Service quota usage metrics are in the AWS/Usage namespace and are collected every three
minutes.

Currently, the only metric name in this namespace that CloudWatch publishes is ResourceCount.
This metric is published with the dimensions Service, Class, Type, and Resource.

Metric Description

ResourceCount The number of the specified resources running in your
account. The resources are defined by the dimensions
associated with the metric.

The most useful statistic for this metric is MAXIMUM,
which represents the maximum number of resources
used during the 3-minute period.

The following dimensions are used to refine the usage metrics that are published by Amazon Data
Firehose.

Dimension Description

Service The name of the AWS service containing the resource.
For Amazon Data Firehose usage metrics, the value for
this dimension is Firehose.

Class The class of resource being tracked. Amazon Data
Firehose API usage metrics use this dimension with a
value of None.

Type The type of resource being tracked. Currently, when the
Service dimension is Firehose, the only valid value for
Type is Resource.

Resource The name of the AWS resource. Currently, when the
Service dimension is Firehose, the only valid value for
Resource is DeliveryStreams .

Amazon Data Firehose Usage Metrics 298

Amazon Data Firehose Developer Guide

Access CloudWatch Metrics for Amazon Data Firehose

You can monitor metrics for Amazon Data Firehose using the CloudWatch console, command line,
or CloudWatch API. The following procedures show you how to access metrics using these different
methods.

To access metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar, choose a region.

3. In the navigation pane, choose Metrics.

4. Choose the Firehose namespace.

5. Choose Firehose stream Metrics or Firehose Metrics.

6. Select a metric to add to the graph.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

aws cloudwatch list-metrics --namespace "AWS/Firehose"

aws cloudwatch get-metric-statistics --namespace "AWS/Firehose" \
--metric-name DescribeDeliveryStream.Latency --statistics Average --period 3600 \
--start-time 2017-06-01T00:00:00Z --end-time 2017-06-30T00:00:00Z

Monitor Amazon Data Firehose Using CloudWatch Logs

Amazon Data Firehose integrates with Amazon CloudWatch Logs so that you can view the specific
error logs when the Lambda invocation for data transformation or data delivery fails. You can
enable Amazon Data Firehose error logging when you create your Firehose stream.

If you enable Amazon Data Firehose error logging in the Amazon Data Firehose console,
a log group and corresponding log streams are created for the Firehose stream on your
behalf. The format of the log group name is /aws/kinesisfirehose/delivery-stream-
name, where delivery-stream-name is the name of the corresponding Firehose stream.
DestinationDelivery is the log stream that is created and used to log any errors related to the

Access CloudWatch Metrics for Amazon Data Firehose 299

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Data Firehose Developer Guide

delivery to the primary destination. Another log stream called BackupDelivery is created only
if S3 backup is enabled for the destination. The BackupDelivery log stream is used to log any
errors related to the delivery to the S3 backup.

For example, if you create a Firehose stream "MyStream" with Amazon Redshift as the
destination and enable Amazon Data Firehose error logging, the following are created on your
behalf: a log group named aws/kinesisfirehose/MyStream and two log streams named
DestinationDelivery and BackupDelivery. In this example, DestinationDelivery will be
used to log any errors related to the delivery to the Amazon Redshift destination and also to the
intermediate S3 destination. BackupDelivery, in case S3 backup is enabled, will be used to log
any errors related to the delivery to the S3 backup bucket.

You can enable Amazon Data Firehose error logging through the AWS CLI, the API, or AWS
CloudFormation using the CloudWatchLoggingOptions configuration. To do so, create a log
group and a log stream in advance. We recommend reserving that log group and log stream for
Amazon Data Firehose error logging exclusively. Also ensure that the associated IAM policy has
"logs:putLogEvents" permission. For more information, see Controlling access with Amazon
Data Firehose.

Note that Amazon Data Firehose does not guarantee that all delivery error logs are sent to
CloudWatch Logs. In circumstances where delivery failure rate is high, Amazon Data Firehose
samples delivery error logs before sending them to CloudWatch Logs.

There is a nominal charge for error logs sent to CloudWatch Logs. For more information, see
Amazon CloudWatch Pricing.

Contents

• Data delivery errors

Data delivery errors

The following is a list of data delivery error codes and messages for each Amazon Data Firehose
destination. Each error message also describes the proper action to take to fix the issue.

Errors

• Amazon S3 Data delivery errors

• Apache Iceberg Tables Data Delivery Errors

• Amazon Redshift Data delivery errors

Data delivery errors 300

https://aws.amazon.com/cloudwatch/pricing/

Amazon Data Firehose Developer Guide

• Snowflake Data delivery errors

• Splunk Data delivery errors

• ElasticSearch Data delivery errors

• HTTPS Endpoint Data delivery errors

• Amazon OpenSearch Service Data delivery errors

• Lambda invocation errors

• Kinesis invocation errors

• Kinesis DirectPut invocation errors

• AWS Glue invocation errors

• DataFormatConversion invocation errors

Amazon S3 Data delivery errors

Amazon Data Firehose can send the following Amazon S3-related errors to CloudWatch Logs.

Error Code Error Message and Information

S3.KMS.No
tFoundExc
eption

"The provided AWS KMS key was not found. If you are using what you
believe to be a valid AWS KMS key with the correct role, check if there
is a problem with the account to which the AWS KMS key is attached."

S3.KMS.Re
questLimi
tExceeded

"The KMS request per second limit was exceeded while attempting to
encrypt S3 objects. Increase the request per second limit."

For more information, see Limits in the AWS Key Management Service
Developer Guide.

S3.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role, and the access
policy allows access to the S3 bucket."

S3.Accoun
tProblem

"There is a problem with your AWS account that prevents the operation
from completing successfully. Contact AWS Support."

S3.AllAcc
essDisabled

"Access to the account provided has been disabled. Contact AWS
Support."

Data delivery errors 301

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

S3.InvalidPayer "Access to the account provided has been disabled. Contact AWS
Support."

S3.NotSignedUp "The account is not signed up for Amazon S3. Sign the account up or
use a different account."

S3.NoSuchBucket "The specified bucket does not exist. Create the bucket or use a
different bucket that does exist."

S3.Method
NotAllowed

"The specified method is not allowed against this resource. Modify the
bucket’s policy to allow the correct Amazon S3 operation permissions."

InternalError "An internal error occurred while attempting to deliver data. Delivery
will be retried; if the error persists, then it will be reported to AWS for
resolution."

S3.KMS.Ke
yDisabled

"The provided KMS key is disabled. Enable the key or use a different
key."

S3.KMS.In
validStat
eException

"The provided KMS key is in an invalid state. Please use a different key."

KMS.Inval
idStateEx
ception

"The provided KMS key is in an invalid state. Please use a different key."

KMS.Disab
ledException

"The provided KMS key is disabled. Please fix the key or use a different
key."

S3.SlowDown "The rate of put request to the specified bucket was too high. Increase
Firehose stream buffer size or reduce put requests from other applicati
ons."

S3.Subscr
iptionRequired

"Access was denied when calling S3. Ensure that the IAM role and the
KMS Key (if provided) passed in has Amazon S3 subscription."

Data delivery errors 302

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

S3.InvalidToken "The provided token is malformed or otherwise invalid. Please check
the credentials provided."

S3.KMS.Ke
yNotConfigured

"KMS key not configured. Configure your KMSMasterKeyID, or disable
encryption for your S3 bucket."

S3.KMS.As
ymmetricC
MKNotSupported

"Amazon S3 supports only symmetric CMKs. You cannot use an
asymmetric CMK to encrypt your data in Amazon S3. To get the type of
your CMK, use the KMS DescribeKey operation."

S3.Illega
lLocation
Constrain
tException

"Firehose currently uses s3 global endpoint for data delivery to the
configured s3 bucket. The region of the configured s3 bucket doesn't
support s3 global endpoint. Please create a Firehose stream in the
same region as the s3 bucket or use s3 bucket in the region that
supports global endpoint."

S3.Invali
dPrefixCo
nfigurati
onException

"The custom s3 prefix used for the timestamp evaluation is invalid.
Check your s3 prefix contains valid expressions for the current date and
time of the year."

DataForma
tConversi
on.Malfor
medData

"Illegal character found between tokens."

Apache Iceberg Tables Data Delivery Errors

For Apache Iceberg Tables data delivery errors, see Deliver data to Apache Iceberg Tables.

Amazon Redshift Data delivery errors

Amazon Data Firehose can send the following Amazon Redshift-related errors to CloudWatch Logs.

Data delivery errors 303

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
TableNotFound

"The table to which to load data was not found. Ensure that the
specified table exists."

The destination table in Amazon Redshift to which data should be
copied from S3 was not found. Note that Amazon Data Firehose does
not create the Amazon Redshift table if it does not exist.

Redshift.
SyntaxError

"The COPY command contains a syntax error. Retry the command."

Redshift.
Authentic
ationFailed

"The provided user name and password failed authentication. Provide a
valid user name and password."

Redshift.
AccessDenied

"Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role."

Redshift.
S3BucketA
ccessDenied

"The COPY command was unable to access the S3 bucket. Ensure that
the access policy for the provided IAM role allows access to the S3
bucket."

Redshift.
DataLoadFailed

"Loading data into the table failed. Check STL_LOAD_ERRORS system
table for details."

Redshift.
ColumnNotFound

"A column in the COPY command does not exist in the table. Specify a
valid column name."

Redshift.
DatabaseN
otFound

"The database specified in the Amazon Redshift destination configura
tion or JDBC URL was not found. Specify a valid database name."

Redshift.
Incorrect
CopyOptions

"Conflicting or redundant COPY options were provided. Some options
are not compatible in certain combinations. Check the COPY command
reference for more info."

For more information, see the Amazon Redshift COPY command in the
Amazon Redshift Database Developer Guide.

Data delivery errors 304

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
MissingColumn

"There is a column defined in the table schema as NOT NULL without
a DEFAULT value and not included in the column list. Exclude this
column, ensure that the loaded data always provides a value for this
column, or add a default value to the Amazon Redshift schema for this
table."

Redshift.
Connectio
nFailed

"The connection to the specified Amazon Redshift cluster failed. Ensure
that security settings allow Amazon Data Firehose connections, that
the cluster or database specified in the Amazon Redshift destination
configuration or JDBC URL is correct, and that the cluster is available."

Redshift.
ColumnMismatch

"The number of jsonpaths in the COPY command and the number of
columns in the destination table should match. Retry the command."

Redshift.
Incorrect
OrMissing
Region

"Amazon Redshift attempted to use the wrong region endpoint for
accessing the S3 bucket. Either specify a correct region value in the
COPY command options or ensure that the S3 bucket is in the same
region as the Amazon Redshift database."

Redshift.
Incorrect
JsonPathsFile

"The provided jsonpaths file is not in a supported JSON format. Retry
the command."

Redshift.
MissingS3File

"One or more S3 files required by Amazon Redshift have been removed
from the S3 bucket. Check the S3 bucket policies to remove any
automatic deletion of S3 files."

Redshift.
Insuffici
entPrivilege

"The user does not have permissions to load data into the table. Check
the Amazon Redshift user permissions for the INSERT privilege."

Redshift.
ReadOnlyC
luster

"The query cannot be executed because the system is in resize mode.
Try the query again later."

Data delivery errors 305

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
DiskFull

"Data could not be loaded because the disk is full. Increase the capacity
of the Amazon Redshift cluster or delete unused data to free disk
space."

InternalError "An internal error occurred while attempting to deliver data. Delivery
will be retried; if the error persists, then it will be reported to AWS for
resolution."

Redshift.
ArgumentN
otSupported

"The COPY command contains unsupported options."

Redshift.
AnalyzeTa
bleAccess
Denied

"Access denied. Copy from S3 to Redshift is failing because analyze
table can only be done by table or database owner."

Redshift.
SchemaNotFound

"The schema specified in the DataTableName of Amazon Redshift
destination configuration was not found. Specify a valid schema name."

Redshift.
ColumnSpe
cifiedMor
eThanOnce

"There is a column specified more than once in the column list. Ensure
that duplicate columns are removed."

Redshift.
ColumnNot
NullWitho
utDefault

"There is a non-null column without DEFAULT that is not included in
the column list. Ensure that such columns are included in the column
list."

Redshift.
Incorrect
BucketRegion

"Redshift attempted to use a bucket in a different region from the
cluster. Please specify a bucket within the same region as the cluster."

Redshift.
S3SlowDown

"High request rate to S3. Reduce the rate to avoid getting throttled."

Data delivery errors 306

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
InvalidCo
pyOptionF
orJson

"Please use either auto or a valid S3 path for json copyOption."

Redshift.
InvalidCo
pyOptionJ
SONPathFormat

"COPY failed with error \"Invalid JSONPath format. Array index is out of
range\". Please rectify the JSONPath expression."

Redshift.
InvalidCo
pyOptionR
BACAclNot
Allowed

"COPY failed with error \"Cannot use RBAC acl framework while
permission propagation is not enabled.\"

Redshift.
DiskSpace
QuotaExceeded

"Transaction aborted due to disk space quota exceed. Free up disk
space or request increased quota for the schema(s)."

Redshift.
Connectio
nsLimitEx
ceeded

"Connection limit exceeded for user."

Redshift.
SslNotSup
ported

"The connection to the specified Amazon Redshift cluster failed
because the server does not support SSL. Please check your cluster
settings."

Redshift.
HoseNotFound

"The hose has been deleted. Please check the status of your hose."

Redshift.
Delimiter

"The copyOptions delimiter in the copyCommand is invalid. Ensure that
it is a single character."

Data delivery errors 307

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
QueryCancelled

"The user has canceled the COPY operation."

Redshift.
Compressi
onMismatch

"Hose is configured with UNCOMPRESSED, but copyOption includes a
compression format."

Redshift.
Encryptio
nCredentials

"The ENCRYPTED option requires credentials in the format: 'aws_iam_
role=...;master_symmetric_key=...' or 'aws_access_key_id=...;aws_
secret_access_key=...[;token=...];master_symmetric_key=...'"

Redshift.
InvalidCo
pyOptions

"Invalid COPY configuration options."

Redshift.
InvalidMe
ssageFormat

"Copy command contains an invalid character."

Redshift.
Transacti
onIdLimit
Reached

"Transaction ID limit reached."

Redshift.
Destinati
onRemoved

"Please verify that the redshift destination exists and is configured
correctly in the Firehose configuration."

Redshift.
OutOfMemory

"The Redshift cluster is running out of memory. Please ensure the
cluster has sufficient capacity."

Redshift.
CannotFor
kProcess

"The Redshift cluster is running out of memory. Please ensure the
cluster has sufficient capacity."

Data delivery errors 308

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Redshift.
SslFailure

"The SSL connection closed during the handshake."

Redshift.Resize "The Redshift cluster is resizing. Firehose will not be able to deliver
data while the cluster is resizing."

Redshift.
ImproperQ
ualifiedName

"The qualified name is improper (too many dotted names)."

Redshift.
InvalidJs
onPathFormat

"Invalid JSONPath Format."

Redshift.
TooManyCo
nnections
Exception

"Too many connections to Redshift."

Redshift.
PSQLException

"PSQlException observed from Redshift."

Redshift.
Duplicate
SecondsSp
ecification

"Duplicate seconds specification in date/time format."

Redshift.
RelationC
ouldNotBe
Opened

"Encountered Redshift error, relation could not be opened. Check
Redshift logs for the specified DB."

Redshift.
TooManyClients

"Encountered too many clients exception from Redshift. Revisit max
connections to the database if there are multiple producers writing to it
simultaneously."

Data delivery errors 309

Amazon Data Firehose Developer Guide

Snowflake Data delivery errors

Firehose can send the following Snowflake-related errors to CloudWatch Logs.

Error Code Error Message and Information

Snowflake
.InvalidUrl

"Firehose is unable to connect to Snowflake. Please make sure that
Account url is specified correctly in Snowflake destination configura
tion."

Snowflake
.InvalidUser

"Firehose is unable to connect to Snowflake. Please make sure that
User is specified correctly in Snowflake destination configuration."

Snowflake
.InvalidRole

"The specified snowflake role does not exist or is not authorized. Please
make sure that the role is granted to the user specified"

Snowflake
.InvalidTable

"The supplied table does not exist or is not authorized"

Snowflake
.InvalidSchema

"The supplied schema does not exist or is not authorized"

Snowflake
.InvalidD
atabase

"The supplied database does not exist or is not authorized"

Snowflake
.InvalidP
rivateKey
OrPassphrase

"The specified private key or passphrase is not valid. Note that the
private key provided should be a valid PEM RSA private key"

Snowflake
.MissingC
olumns

"The insert request is rejected due to missing columns in input payload.
Make sure that values are specified for all non-nullable columns"

Snowflake
.ExtraColumns

"The insert request is rejected due to extra columns. Columns not
present in table shouldn't be specified"

Data delivery errors 310

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Snowflake
.InvalidInput

"Delivery failed due to invalid input format. Make sure that the input
payload provided is in the JSON format acceptable"

Snowflake
.Incorrec
tValue

"Delivery failed due to incorrect data type in the input payload. Make
sure that the JSON values specified in input payload adhere to the
datatype declared in Snowflake table definition"

Splunk Data delivery errors

Amazon Data Firehose can send the following Splunk-related errors to CloudWatch Logs.

Error Code Error Message and Information

Splunk.Pr
oxyWithou
tStickySe
ssions

"If you have a proxy (ELB or other) between Amazon Data Firehose and
the HEC node, you must enable sticky sessions to support HEC ACKs."

Splunk.Di
sabledToken

"The HEC token is disabled. Enable the token to allow data delivery to
Splunk."

Splunk.In
validToken

"The HEC token is invalid. Update Amazon Data Firehose with a valid
HEC token."

Splunk.In
validData
Format

"The data is not formatted correctly. To see how to properly format
data for Raw or Event HEC endpoints, see Splunk Event Data."

Splunk.In
validIndex

"The HEC token or input is configured with an invalid index. Check your
index configuration and try again."

Splunk.Se
rverError

"Data delivery to Splunk failed due to a server error from the HEC node.
Amazon Data Firehose will retry sending the data if the retry duration
in your Amazon Data Firehose is greater than 0. If all the retries fail,
Amazon Data Firehose backs up the data to Amazon S3."

Data delivery errors 311

https://docs.splunk.com/Documentation/Splunk/latest/Data/FormateventsforHTTPEventCollector

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Splunk.Di
sabledAck

"Indexer acknowledgement is disabled for the HEC token. Enable
indexer acknowledgement and try again. For more info, see Enable
indexer acknowledgement."

Splunk.Ac
kTimeout

"Did not receive an acknowledgement from HEC before the HEC
acknowledgement timeout expired. Despite the acknowledgement
timeout, it's possible the data was indexed successfully in Splunk.
Amazon Data Firehose backs up in Amazon S3 data for which the
acknowledgement timeout expired."

Splunk.Ma
xRetriesFailed

"Failed to deliver data to Splunk or to receive acknowledgment. Check
your HEC health and try again."

Splunk.Co
nnectionT
imeout

"The connection to Splunk timed out. This might be a transient error
and the request will be retried. Amazon Data Firehose backs up the
data to Amazon S3 if all retries fail."

Splunk.In
validEndpoint

"Could not connect to the HEC endpoint. Make sure that the HEC
endpoint URL is valid and reachable from Amazon Data Firehose."

Splunk.Co
nnectionClosed

"Unable to send data to Splunk due to a connection failure. This might
be a transient error. Increasing the retry duration in your Amazon Data
Firehose configuration might guard against such transient failures."

Splunk.SS
LUnverified

"Could not connect to the HEC endpoint. The host does not match the
certificate provided by the peer. Make sure that the certificate and the
host are valid."

Splunk.SS
LHandshake

"Could not connect to the HEC endpoint. Make sure that the certificate
and the host are valid."

Splunk.UR
LNotFound

"The requested URL was not found on the Splunk server. Please check
the Splunk cluster and make sure it is configured correctly."

Data delivery errors 312

https://docs.splunk.com/Documentation/Splunk/9.2.2/Data/AboutHECIDXAck
https://docs.splunk.com/Documentation/Splunk/9.2.2/Data/AboutHECIDXAck

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Splunk.Se
rverError
.ContentT
ooLarge

"Data delivery to Splunk failed due to a server error with a statusCod
e: 413, message: the request your client sent was too large. See splunk
docs to configure max_content_length."

Splunk.In
dexerBusy

"Data delivery to Splunk failed due to a server error from the HEC node.
Make sure HEC endpoint or the Elastic Load Balancer is reachable and is
healthy."

Splunk.Co
nnectionR
ecycled

"The connection from Firehose to Splunk has been recycled. Delivery
will be retried."

Splunk.Ac
knowledge
mentsDisabled

"Could not get acknowledgements on POST. Make sure that acknowled
gements are enabled on HEC endpoint."

Splunk.In
validHecR
esponseCh
aracter

"Invalid characters found in HEC response, make sure to check to the
service and HEC configuration."

ElasticSearch Data delivery errors

Amazon Data Firehose can send the following ElasticSearch errors to CloudWatch Logs.

Error Code Error Message and Information

ES.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

ES.Resour
ceNotFound

"The specified AWS Elasticsearch domain does not exist."

Data delivery errors 313

Amazon Data Firehose Developer Guide

HTTPS Endpoint Data delivery errors

Amazon Data Firehose can send the following HTTP Endpoint-related errors to CloudWatch Logs.
If none of these errors are a match to the problem that you're experiencing, the default error is the
following: "An internal error occurred while attempting to deliver data. Delivery will be retried; if
the error persists, then it will be reported to AWS for resolution."

Error Code Error Message and Information

HttpEndpo
int.Reque
stTimeout

The delivery timed out before a response was received and will be
retried. If this error persists, contact the AWS Firehose service team.

HttpEndpo
int.Respo
nseTooLarge

"The response received from the endpoint is too large. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.Inval
idRespons
eFromDest
ination

"The response received from the specified endpoint is invalid. Contact
the owner of the endpoint to resolve the issue."

HttpEndpo
int.Desti
nationExc
eption

"The following response was received from the endpoint destination."

HttpEndpo
int.Conne
ctionFailed

"Unable to connect to the destination endpoint. Contact the owner of
the endpoint to resolve this issue."

HttpEndpo
int.Conne
ctionReset

"Unable to maintain connection with the endpoint. Contact the owner
of the endpoint to resolve this issue."

Data delivery errors 314

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.Conne
ctionReset

"Trouble maintaining connection with the endpoint. Please reach out to
the owner of the endpoint."

HttpEndpo
int.Respo
nseReason
PhraseExc
eededLimit

"The response reason phrase received from the endpoint exceed the
configured limit of 64 characters."

HttpEndpo
int.Inval
idRespons
eFromDest
ination

"The response received from the endpoint is invalid. See Troublesh
ooting HTTP Endpoints in the Firehose documentation for more
information. Reason: "

HttpEndpo
int.Desti
nationExc
eption

"Delivery to the endpoint was unsuccessful. See Troubleshooting
HTTP Endpoints in the Firehose documentation for more information.
Response received with status code "

HttpEndpo
int.Inval
idStatusCode

"Received an invalid response status code."

HttpEndpo
int.SSLHa
ndshakeFailure

"Unable to complete an SSL Handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.SSLHa
ndshakeFailure

"Unable to complete an SSL Handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

HttpEndpo
int.SSLFailure

"Unable to complete TLS handshake with the endpoint. Contact the
owner of the endpoint to resolve this issue."

Data delivery errors 315

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.SSLHa
ndshakeCe
rtificate
PathFailure

"Unable to complete an SSL Handshake with the endpoint due to
invalid certification path. Contact the owner of the endpoint to resolve
this issue."

HttpEndpo
int.SSLHa
ndshakeCe
rtificate
PathValid
ationFailure

"Unable to complete an SSL Handshake with the endpoint due to
certification path validation failure. Contact the owner of the endpoint
to resolve this issue."

HttpEndpo
int.MakeR
equestFai
lure.Ille
galUriExc
eption

"HttpEndpoint request failed due to invalid input in URI. Please make
sure all the characters in the input URI are valid."

HttpEndpo
int.MakeR
equestFai
lure.Ille
galCharac
terInHead
erValue

"HttpEndpoint request failed due to illegal response error. Illegal
character '\n' in header value."

HttpEndpo
int.Illeg
alRespons
eFailure

"HttpEndpoint request failed due to illegal response error. HTTP
message must not contain more than one Content-Type header."

Data delivery errors 316

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

HttpEndpo
int.Illeg
alMessageStart

"HttpEndpoint request failed due to illegal response error. Illegal HTTP
message start. See Troubleshooting HTTP Endpoints in the Firehose
documentation for more information."

Amazon OpenSearch Service Data delivery errors

For the OpenSearch Service destination, Amazon Data Firehose sends errors to CloudWatch Logs as
they are returned by OpenSearch Service.

In addition to errors that may return from OpenSearch clusters, you may encounter the following
two errors:

• Authentication/authorization error occurs during attempt to deliver data to destination
OpenSearch Service cluster. This can happen due to any permission issues and/or intermittently
when your Amazon Data Firehose target OpenSearch Service domain configuration is modified.
Please check the cluster policy and role permissions.

• Data couldn’t be delivered to destination OpenSearch Service cluster due to authentication/
authorization failures. This can happen due to any permission issues and/or intermittently when
your Amazon Data Firehose target OpenSearch Service domain configuration is modified. Please
check the cluster policy and role permissions.

Error Code Error Message and Information

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

OS.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

Data delivery errors 317

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.AccessDenied "Access was denied. Ensure that the provided IAM role associated with
firehose is not deleted."

OS.Resour
ceNotFound

"The specified Amazon OpenSearch Service domain does not exist."

OS.Resour
ceNotFound

"The specified Amazon OpenSearch Service domain does not exist."

OS.AccessDenied "Access was denied. Ensure that the trust policy for the provided IAM
role allows Firehose to assume the role, and the access policy allows
access to the Amazon OpenSearch Service API."

OS.Reques
tTimeout

"Request to the Amazon OpenSearch Service cluster or OpenSearch
Serverless collection timed out. Ensure that the cluster or collection has
sufficient capacity for the current workload."

OS.ClusterError "The Amazon OpenSearch Service cluster returned an unspecified
error."

OS.Reques
tTimeout

"Request to the Amazon OpenSearch Service cluster timed out. Ensure
that the cluster has sufficient capacity for the current workload."

OS.Connec
tionFailed

"Trouble connecting to the Amazon OpenSearch Service cluster or
OpenSearch Serverless collection. Ensure that the cluster or collection
is healthy and reachable."

OS.Connec
tionReset

"Unable to maintain connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Contact the owner of the
cluster or collection to resolve this issue."

OS.Connec
tionReset

"Trouble maintaining connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Ensure that the cluster
or collection is healthy and has sufficient capacity for the current
workload."

Data delivery errors 318

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.Connec
tionReset

"Trouble maintaining connection with the Amazon OpenSearch Service
cluster or OpenSearch Serverless collection. Ensure that the cluster
or collection is healthy and has sufficient capacity for the current
workload."

OS.AccessDenied "Access was denied. Ensure that the access policy on the Amazon
OpenSearch Service cluster grants access to the configured IAM role."

OS.Valida
tionException

"The OpenSearch cluster returned a ESServiceException. One of the
reasons is that the cluster has been upgraded to OS 2.x or higher, but
the hose still has the TypeName parameter configured. Update the
hose configuration by setting the TypeName to an empty string, or
change the endpoint to the cluster, that supports the Type parameter."

OS.Valida
tionException

"Member must satisfy regular expression pattern: [a-z][a-z0-9\\-]+

OS.JsonPa
rseException

"The Amazon OpenSearch Service cluster returned a JsonParse
Exception. Ensure that the data being put is valid."

OS.Amazon
OpenSearc
hServiceP
arseException

"The Amazon OpenSearch Service cluster returned an AmazonOpe
nSearchServiceParseException. Ensure that the data being put is valid."

OS.Explic
itIndexIn
BulkNotAllowed

"Ensure rest.action.multi.allow_explicit_index is set to true on the
Amazon OpenSearch Service cluster."

OS.ClusterError "The Amazon OpenSearch Service cluster or OpenSearch Serverless
collection returned an unspecified error."

OS.Cluste
rBlockExc
eption

"The cluster returned a ClusterBlockException. It may be overloaded."

Data delivery errors 319

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.InvalidARN "The Amazon OpenSearch Service ARN provided is invalid. Please check
your DeliveryStream configuration."

OS.Malfor
medData

"One or more records are malformed. Please ensure that each record is
single valid JSON object and that it does not contain newlines."

OS.Intern
alError

"An internal error occurred when attempting to deliver data. Delivery
will be retried; if the error persists, it will be reported to AWS for
resolution."

OS.AliasW
ithMultip
leIndices
NotAllowed

"Alias has more than one indices associated with it. Ensure that the alias
has only one index associated with it."

OS.Unsupp
ortedVersion

"Amazon OpenSearch Service 6.0 is not currently supported by Amazon
Data Firehose. Contact AWS Support for more information."

OS.CharCo
nversionE
xception

"One or more records contained an invalid character."

OS.Invali
dDomainNa
meLength

"The domain name length is not within valid OS limits."

OS.VPCDom
ainNotSup
ported

"Amazon OpenSearch Service domains within VPCs are currently not
supported."

OS.Connec
tionError

"The http server closed the connection unexpectedly, please verify
the health of the Amazon OpenSearch Service cluster or OpenSearch
Serverless collection."

OS.LargeF
ieldData

"The Amazon OpenSearch Service cluster aborted the request as it
contained a field data larger than allowed."

Data delivery errors 320

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

OS.BadGateway "The Amazon OpenSearch Service cluster or OpenSearch Serverless
collection aborted the request with a response: 502 Bad Gateway."

OS.Servic
eException

"Error received from the Amazon OpenSearch Service cluster or
OpenSearch Serverless collection. If the cluster or collection is behind a
VPC, ensure network configuration allows connectivity."

OS.Gatewa
yTimeout

"Firehose encountered timeout errors when connecting to the Amazon
OpenSearch Service cluster or OpenSearch Serverless collection."

OS.Malfor
medData

"Amazon Data Firehose does not support Amazon OpenSearch Service
Bulk API commands inside the Firehose record."

OS.Respon
seEntryCo
untMismatch

"The response from the Bulk API contained more entries than the
number of records sent. Ensure that each record contains only one
JSON object and that there are no newlines."

Lambda invocation errors

Amazon Data Firehose can send the following Lambda invocation errors to CloudWatch Logs.

Error Code Error Message and Information

Lambda.As
sumeRoleA
ccessDenied

"Access was denied. Ensure that the trust policy for the provided IAM
role allows Amazon Data Firehose to assume the role."

Lambda.In
vokeAcces
sDenied

"Access was denied. Ensure that the access policy allows access to the
Lambda function."

Lambda.Js
onProcess
ingException

"There was an error parsing returned records from the Lambda
function. Ensure that the returned records follow the status model
required by Amazon Data Firehose."

Data delivery errors 321

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

For more information, see Required parameters for data transform
ation.

Lambda.In
vokeLimit
Exceeded

"The Lambda concurrent execution limit is exceeded. Increase the
concurrent execution limit."

For more information, see AWS Lambda Limits in the AWS Lambda
Developer Guide.

Lambda.Du
plicatedR
ecordId

"Multiple records were returned with the same record ID. Ensure that
the Lambda function returns unique record IDs for each record."

For more information, see Required parameters for data transform
ation.

Lambda.Mi
ssingRecordId

"One or more record IDs were not returned. Ensure that the Lambda
function returns all received record IDs."

For more information, see Required parameters for data transform
ation.

Lambda.Re
sourceNotFound

"The specified Lambda function does not exist. Use a different function
that does exist."

Lambda.In
validSubn
etIDException

"The specified subnet ID in the Lambda function VPC configuration is
invalid. Ensure that the subnet ID is valid."

Lambda.In
validSecu
rityGroup
IDException

"The specified security group ID in the Lambda function VPC configura
tion is invalid. Ensure that the security group ID is valid."

Data delivery errors 322

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Lambda.Su
bnetIPAdd
ressLimit
ReachedEx
ception

"AWS Lambda was not able to set up the VPC access for the Lambda
function because one or more configured subnets have no available IP
addresses. Increase the IP address limit."

For more information, see Amazon VPC Limits - VPC and Subnets in the
Amazon VPC User Guide.

Lambda.EN
ILimitRea
chedException

"AWS Lambda was not able to create an Elastic Network Interface (ENI)
in the VPC, specified as part of the Lambda function configuration,
because the limit for network interfaces has been reached. Increase the
network interface limit."

For more information, see Amazon VPC Limits - Network Interfaces in
the Amazon VPC User Guide.

Lambda.Fu
nctionTimedOut

The Lambda function invocation timed out. Increase the Timeout
setting in the Lambda function. For more information, see Configuring
function timeout.

Lambda.Fu
nctionError

This can be due to any of the following errors:

• Invalid output structure. Check your function and make sure the
output is in the required format. Also, make sure the processed
records contain a valid result status of Dropped, Ok, or Processin
gFailed .

• The Lambda function was successfully invoked but it returned an
error result.

• Lambda was unable to decrypt the environment variables because
KMS access was denied. Check the function's KMS key settings as
well as the key policy. For more information, see Troubleshooting Key
Access.

Data delivery errors 323

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Appendix_Limits.html#vpc-limits-vpcs-subnets
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Appendix_Limits.html#vpc-limits-enis
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Lambda.Fu
nctionReq
uestTimedOut

Amazon Data Firehose encountered Request did not complete before
the request timeout configuration error when invoking Lambda. Revisit
the Lambda code to check if the Lambda code is meant to run beyond
the configured timeout. If so, consider tuning Lambda configura
tion settings, including memory, timeout. For more information, see
Configuring Lambda function options.

Lambda.Ta
rgetServe
rFailedTo
Respond

Amazon Data Firehose encountered an error. Target server failed to
respond error when calling the AWS Lambda service.

Lambda.In
validZipF
ileException

Amazon Data Firehose encountered InvalidZipFileException when
invoking the Lambda function. Check your Lambda function configura
tion settings and the Lambda code zip file.

Lambda.In
ternalSer
verError

"Amazon Data Firehose encountered InternalServerError when calling
the AWS Lambda service. Amazon Data Firehose will retry sending data
a fixed number of times. You can specify or override the retry options
using the CreateDeliveryStream or UpdateDestination APIs.
If the error persists, contact AWS Lambda support team.

Lambda.Se
rviceUnav
ailable

Amazon Data Firehose encountered ServiceUnavailableException when
calling the AWS Lambda service. Amazon Data Firehose will retry
sending data a fixed number of times. You can specify or override the
retry options using the CreateDeliveryStream or UpdateDes
tination APIs. If the error persists, contact AWS Lambda support.

Lambda.In
validSecu
rityToken

Cannot invoke Lambda function due to invalid security token. Cross
partition Lambda invocation is not supported.

Data delivery errors 324

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Lambda.In
vocationF
ailure

This can be due to any of the following errors:

• Amazon Data Firehose encountered errors when calling AWS
Lambda. The operation will be retried; if the error persists, it will be
reported to AWS for resolution."

• Amazon Data Firehose encountered a KMSInvalidStateException
from Lambda. Lambda was unable to decrypt the environment
variables because the KMS key used is in an invalid state for Decrypt.
Check the lambda function's KMS key.

• Amazon Data Firehose encountered an AWSLambdaException from
Lambda. Lambda was unable to initialize the provided container
image. Verify the image.

• Amazon Data Firehose encountered timeout errors when calling AWS
Lambda. The maximum supported function timeout is 5 minutes. For
more information, see Data Transformation Execution Duration.

Lambda.Js
onMapping
Exception

There was an error parsing returned records from the Lambda function.
Ensure that data field is base-64 encoded.

Kinesis invocation errors

Amazon Data Firehose can send the following Kinesis invocation errors to CloudWatch Logs.

Error Code Error Message and Information

Kinesis.A
ccessDenied

"Access was denied when calling Kinesis. Ensure the access policy on the
IAM role used allows access to the appropriate Kinesis APIs."

Kinesis.R
esourceNo
tFound

"Firehose failed to read from the stream. If the Firehose is attached
with Kinesis Stream, the stream may not exist, or the shard may have
been merged or split. If the Firehose is of DirectPut type, the Firehose
may not exist any more."

Data delivery errors 325

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Kinesis.S
ubscripti
onRequired

"Access was denied when calling Kinesis. Ensure that the IAM role
passed for Kinesis stream access has AWS Kinesis subscription."

Kinesis.T
hrottling

"Throttling error encountered when calling Kinesis. This can be due
to other applications calling the same APIs as the Firehose stream, or
because you have created too many Firehose streams with the same
Kinesis stream as the source."

Kinesis.T
hrottling

"Throttling error encountered when calling Kinesis. This can be due
to other applications calling the same APIs as the Firehose stream, or
because you have created too many Firehose streams with the same
Kinesis stream as the source."

Kinesis.A
ccessDenied

"Access was denied when calling Kinesis. Ensure the access policy on the
IAM role used allows access to the appropriate Kinesis APIs."

Kinesis.A
ccessDenied

"Access was denied while trying to call API operations on the underlyin
g Kinesis Stream. Ensure that the IAM role is propagated and valid."

Kinesis.K
MS.Access
DeniedExc
eption

"Firehose does not have access to the KMS Key used to encrypt/decrypt
the Kinesis Stream. Please grant the Firehose delivery role access to the
key."

Kinesis.K
MS.KeyDisabled

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt/decrypt it is disabled. Enable the key so that
reads can proceed."

Kinesis.K
MS.Invali
dStateExc
eption

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt it is in an invalid state."

Data delivery errors 326

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

Kinesis.K
MS.NotFou
ndException

"Firehose is unable to read from the source Kinesis Stream because the
KMS key used to encrypt it was not found."

Kinesis DirectPut invocation errors

Amazon Data Firehose can send the following Kinesis DirectPut invocation errors to CloudWatch
Logs.

Error Code Error Message and Information

Firehose.
KMS.Acces
sDeniedEx
ception

"Firehose does not have access to the KMS Key. Please check the key
policy."

Firehose.
KMS.Inval
idStateEx
ception

"Firehose is unable to decrypt the data because the KMS key used to
encrypt it is in an invalid state."

Firehose.
KMS.NotFo
undException

"Firehose is unable to decrypt the data because the KMS key used to
encrypt it was not found."

Firehose.
KMS.KeyDi
sabled

"Firehose is unable to decrypt the data because the KMS key used to
encrypt the data is disabled. Enable the key so that data delivery can
proceed."

AWS Glue invocation errors

Amazon Data Firehose can send the following AWS Glue invocation errors to CloudWatch Logs.

Data delivery errors 327

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

DataForma
tConversi
on.Entity
NotFound

"The specified table/database could not be found. Please ensure that
the table/database exists and that the values provided in the schema
configuration are correct, especially with regards to casing."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
specified database with the supplied catalog ID exists."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
passed ARN is in the correct format."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
catalogId provided is valid."

DataForma
tConversi
on.Invali
dVersionId

"Could not find a matching schema from glue. Please make sure the
specified version of the table exists."

DataForma
tConversi
on.NonExi
stentColumns

"Could not find a matching schema from glue. Please make sure the
table is configured with a non-null storage descriptor containing the
target columns."

Data delivery errors 328

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Access
Denied

"Access was denied when assuming role. Please ensure that the role
specified in the data format conversion configuration has granted the
Firehose service permission to assume it."

DataForma
tConversi
on.Thrott
ledByGlue

"Throttling error encountered when calling Glue. Either increase the
request rate limit or reduce the current rate of calling glue through
other applications."

DataForma
tConversi
on.Access
Denied

"Access was denied when calling Glue. Please ensure that the role
specified in the data format conversion configuration has the necessary
permissions."

DataForma
tConversi
on.Invali
dGlueRole

"Invalid role. Please ensure that the role specified in the data format
conversion configuration exists."

DataForma
tConversi
on.Invali
dGlueRole

"The security token included in the request is invalid. Ensure that the
provided IAM role associated with firehose is not deleted."

DataForma
tConversi
on.GlueNo
tAvailabl
eInRegion

"AWS Glue is not yet available in the region you have specified; please
specify a different region."

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and has the correct access permissions."

Data delivery errors 329

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Schema
Validatio
nTimeout

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataFireh
ose.Inter
nalError

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and state is correct."

DataFormatConversion invocation errors

Amazon Data Firehose can send the following DataFormatConversion invocation errors to
CloudWatch Logs.

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

DataForma
tConversi
on.Valida
tionException

"Column names and types must be non-empty strings."

Data delivery errors 330

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.ParseError

"Encountered malformed JSON."

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Malfor
medData

"Length of json key must not be greater than 262144"

DataForma
tConversi
on.Malfor
medData

"The data cannot be decoded as UTF-8."

DataForma
tConversi
on.Malfor
medData

"Illegal character found between tokens."

DataForma
tConversi
on.Invali
dTypeFormat

"The type format is invalid. Check the type syntax."

DataForma
tConversi
on.Invali
dSchema

"Invalid Schema. Please ensure that there are no special characters or
white spaces in column names."

Data delivery errors 331

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dRecord

"Record is not as per schema. One or more map keys were invalid for
map<string,string>."

DataForma
tConversi
on.Malfor
medData

"The input JSON contained a primitive at the top level. The top level
must be an object or array."

DataForma
tConversi
on.Malfor
medData

"The input JSON contained a primitive at the top level. The top level
must be an object or array."

DataForma
tConversi
on.Malfor
medData

"The record was empty or contained only whitespace."

DataForma
tConversi
on.Malfor
medData

"Encountered invalid characters."

DataForma
tConversi
on.Malfor
medData

"Encountered invalid or unsupported timestamp format. Please see the
Firehose developer guide for supported timestamp formats."

DataForma
tConversi
on.Malfor
medData

"A scalar type was found in the data but a complex type was specified
on the schema."

Data delivery errors 332

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Malfor
medData

"A scalar type was found in the data but a complex type was specified
on the schema."

DataForma
tConversi
on.Conver
sionFailu
reException

"ConversionFailureException"

DataForma
tConversi
on.DataFo
rmatConve
rsionCust
omerError
Exception

"DataFormatConversionCustomerErrorException"

DataForma
tConversi
on.DataFo
rmatConve
rsionCust
omerError
Exception

"DataFormatConversionCustomerErrorException"

Data delivery errors 333

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema."

DataForma
tConversi
on.Invali
dSchema

"The schema is invalid."

DataForma
tConversi
on.Malfor
medData

"Data does not match the schema. Invalid format for one or more
dates."

DataForma
tConversi
on.Malfor
medData

"Data contains a highly nested JSON structure that is not supported."

DataForma
tConversi
on.Entity
NotFound

"The specified table/database could not be found. Please ensure that
the table/database exists and that the values provided in the schema
configuration are correct, especially with regards to casing."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
specified database with the supplied catalog ID exists."

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
passed ARN is in the correct format."

Data delivery errors 334

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.Invali
dInput

"Could not find a matching schema from glue. Please make sure the
catalogId provided is valid."

DataForma
tConversi
on.Invali
dVersionId

"Could not find a matching schema from glue. Please make sure the
specified version of the table exists."

DataForma
tConversi
on.NonExi
stentColumns

"Could not find a matching schema from glue. Please make sure the
table is configured with a non-null storage descriptor containing the
target columns."

DataForma
tConversi
on.Access
Denied

"Access was denied when assuming role. Please ensure that the role
specified in the data format conversion configuration has granted the
Firehose service permission to assume it."

DataForma
tConversi
on.Thrott
ledByGlue

"Throttling error encountered when calling Glue. Either increase the
request rate limit or reduce the current rate of calling glue through
other applications."

DataForma
tConversi
on.Access
Denied

"Access was denied when calling Glue. Please ensure that the role
specified in the data format conversion configuration has the necessary
permissions."

DataForma
tConversi
on.Invali
dGlueRole

"Invalid role. Please ensure that the role specified in the data format
conversion configuration exists."

Data delivery errors 335

Amazon Data Firehose Developer Guide

Error Code Error Message and Information

DataForma
tConversi
on.GlueNo
tAvailabl
eInRegion

"AWS Glue is not yet available in the region you have specified; please
specify a different region."

DataForma
tConversi
on.GlueEn
cryptionE
xception

"There was an error retrieving the master key. Ensure that the key exists
and has the correct access permissions."

DataForma
tConversi
on.Schema
Validatio
nTimeout

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataFireh
ose.Inter
nalError

"Timed out while retrieving table from Glue. If you have a large number
of Glue table versions, please add 'glue:GetTableVersion' permission
(recommended) or delete unused table versions. If you do not have a
large number of tables in Glue, please contact AWS Support."

DataForma
tConversi
on.Malfor
medData

"One or more fields have incorrect format."

Access CloudWatch logs for Amazon Data Firehose

You can view the error logs related to Amazon Data Firehose data delivery failure using the
Amazon Data Firehose console or the CloudWatch console. The following procedures show you
how to access error logs using these two methods.

Access CloudWatch logs for Amazon Data Firehose 336

Amazon Data Firehose Developer Guide

To access error logs using the Amazon Data Firehose console

1. Sign in to the AWS Management Console and open the Firehose console at https://
console.aws.amazon.com/firehose

2. On the navigation bar, choose an AWS Region.

3. Choose a Firehose stream name to go to the Firehose stream details page.

4. Choose Error Log to view a list of error logs related to data delivery failure.

To access error logs using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar, choose a Region.

3. In the navigation pane, choose Logs.

4. Choose a log group and log stream to view a list of error logs related to data delivery failure.

Monitor Kinesis Agent health

Kinesis Agent publishes custom CloudWatch metrics with a namespace of AWSKinesisAgent. It
helps assess whether the agent is healthy, submitting data into Amazon Data Firehose as specified,
and consuming the appropriate amount of CPU and memory resources on the data producer.

Metrics such as number of records and bytes sent are useful to understand the rate at which
the agent is submitting data to the Firehose stream. When these metrics fall below expected
thresholds by some percentage or drop to zero, it could indicate configuration issues, network
errors, or agent health issues. Metrics such as on-host CPU and memory consumption and
agent error counters indicate data producer resource usage, and provide insights into potential
configuration or host errors. Finally, the agent also logs service exceptions to help investigate
agent issues.

The agent metrics are reported in the region specified in the agent configuration setting
cloudwatch.endpoint. For more information, see Specify agent configuration settings.

Cloudwatch metrics published from multiple Kinesis Agents are aggregated or combined.

There is a nominal charge for metrics emitted from Kinesis Agent, which are enabled by default.
For more information, see Amazon CloudWatch Pricing.

Monitor Agent Health 337

https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/pricing/

Amazon Data Firehose Developer Guide

Monitor with CloudWatch

Kinesis Agent sends the following metrics to CloudWatch.

Metric Description

BytesSent The number of bytes sent to the Firehose stream over the specified
time period.

Units: Bytes

RecordSen
dAttempts

The number of records attempted (either first time, or as a retry) in a
call to PutRecordBatch over the specified time period.

Units: Count

RecordSen
dErrors

The number of records that returned failure status in a call to
PutRecordBatch , including retries, over the specified time period.

Units: Count

ServiceErrors The number of calls to PutRecordBatch that resulted in a service
error (other than a throttling error) over the specified time period.

Units: Count

Log Amazon Data Firehose API calls with AWS CloudTrail

Amazon Data Firehose is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon Data Firehose. CloudTrail captures all API
calls for Amazon Data Firehose as events. The calls captured include calls from the Amazon Data
Firehose console and code calls to the Amazon Data Firehose API operations. If you create a trail,
you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events
for Amazon Data Firehose. If you don't configure a trail, you can still view the most recent events
in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon Data Firehose, the IP address from which the
request was made, who made the request, when it was made, and additional details.

Monitor with CloudWatch 338

Amazon Data Firehose Developer Guide

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Firehose information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon Data Firehose, that activity is recorded in a CloudTrail event along with
other AWS service events in Event history. You can view, search, and download recent events in
your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Data Firehose,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon Data Firehose supports logging the following actions as events in CloudTrail log files:

• CreateDeliveryStream

• DeleteDeliveryStream

• DescribeDeliveryStream

• ListDeliveryStreams

• ListTagsForDeliveryStream

• TagDeliveryStream

• StartDeliveryStreamEncryption

• StopDeliveryStreamEncryption

• UntagDeliveryStream

• UpdateDestination

Firehose information in CloudTrail 339

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeleteDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DescribeDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListDeliveryStreams.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html

Amazon Data Firehose Developer Guide

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Example: Firehose log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
CreateDeliveryStream, DescribeDeliveryStream, ListDeliveryStreams,
UpdateDestination, and DeleteDeliveryStream actions.

{
 "Records":[
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:08:22Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"CreateDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",

Example: Firehose log file entries 340

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Data Firehose Developer Guide

 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream",
 "redshiftDestinationConfiguration":{
 "s3Configuration":{
 "compressionFormat":"GZIP",
 "prefix":"prefix",
 "bucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "bufferingHints":{
 "sizeInMBs":3,
 "intervalInSeconds":900
 },
 "encryptionConfiguration":{
 "kMSEncryptionConfig":{
 "aWSKMSKeyARN":"arn:aws:kms:us-east-1:key"
 }
 }
 },
 "clusterJDBCURL":"jdbc:redshift://example.abc123.us-
west-2.redshift.amazonaws.com:5439/dev",
 "copyCommand":{
 "copyOptions":"copyOptions",
 "dataTableName":"dataTable"
 },
 "password":"",
 "username":"",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose"
 }
 },
 "responseElements":{
 "deliveryStreamARN":"arn:aws:firehose:us-
east-1:111122223333:deliverystream/TestRedshiftStream"
 },
 "requestID":"958abf6a-db21-11e5-bb88-91ae9617edf5",
 "eventID":"875d2d68-476c-4ad5-bbc6-d02872cfc884",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",

Example: Firehose log file entries 341

Amazon Data Firehose Developer Guide

 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:08:54Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"DescribeDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream"
 },
 "responseElements":null,
 "requestID":"aa6ea5ed-db21-11e5-bb88-91ae9617edf5",
 "eventID":"d9b285d8-d690-4d5c-b9fe-d1ad5ab03f14",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:00Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"ListDeliveryStreams",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "limit":10
 },
 "responseElements":null,
 "requestID":"d1bf7f86-db21-11e5-bb88-91ae9617edf5",
 "eventID":"67f63c74-4335-48c0-9004-4ba35ce00128",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },

Example: Firehose log file entries 342

Amazon Data Firehose Developer Guide

 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:09Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"UpdateDestination",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "destinationId":"destinationId-000000000001",
 "deliveryStreamName":"TestRedshiftStream",
 "currentDeliveryStreamVersionId":"1",
 "redshiftDestinationUpdate":{
 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "clusterJDBCURL":"jdbc:redshift://example.abc123.us-
west-2.redshift.amazonaws.com:5439/dev",
 "password":"",
 "username":"",
 "copyCommand":{
 "copyOptions":"copyOptions",
 "dataTableName":"dataTable"
 },
 "s3Update":{
 "bucketARN":"arn:aws:s3:::amzn-s3-demo-bucket-update",
 "roleARN":"arn:aws:iam::111122223333:role/Firehose",
 "compressionFormat":"GZIP",
 "bufferingHints":{
 "sizeInMBs":3,
 "intervalInSeconds":900
 },
 "encryptionConfiguration":{
 "kMSEncryptionConfig":{
 "aWSKMSKeyARN":"arn:aws:kms:us-east-1:key"
 }
 },
 "prefix":"arn:aws:s3:::amzn-s3-demo-bucket"

Example: Firehose log file entries 343

Amazon Data Firehose Developer Guide

 }
 }
 },
 "responseElements":null,
 "requestID":"d549428d-db21-11e5-bb88-91ae9617edf5",
 "eventID":"1cb21e0b-416a-415d-bbf9-769b152a6585",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"AKIAIOSFODNN7EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/CloudTrail_Test_User",
 "accountId":"111122223333",
 "accessKeyId":"AKIAI44QH8DHBEXAMPLE",
 "userName":"CloudTrail_Test_User"
 },
 "eventTime":"2016-02-24T18:10:12Z",
 "eventSource":"firehose.amazonaws.com",
 "eventName":"DeleteDeliveryStream",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-internal/3",
 "requestParameters":{
 "deliveryStreamName":"TestRedshiftStream"
 },
 "responseElements":null,
 "requestID":"d85968c1-db21-11e5-bb88-91ae9617edf5",
 "eventID":"dd46bb98-b4e9-42ff-a6af-32d57e636ad1",
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333"
 }
]
}

Example: Firehose log file entries 344

Amazon Data Firehose Developer Guide

Code examples for Firehose using AWS SDKs

The following code examples show how to use Firehose with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Firehose with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Basic examples for Firehose using AWS SDKs

• Actions for Firehose using AWS SDKs

• Use PutRecord with an AWS SDK or CLI

• Use PutRecordBatch with an AWS SDK or CLI

• Scenarios for Firehose using AWS SDKs

• Use Amazon Data Firehose to process individual and batch records

Basic examples for Firehose using AWS SDKs

The following code examples show how to use the basics of Amazon Data Firehose with AWS SDKs.

Examples

• Actions for Firehose using AWS SDKs

• Use PutRecord with an AWS SDK or CLI

• Use PutRecordBatch with an AWS SDK or CLI

Basics 345

Amazon Data Firehose Developer Guide

Actions for Firehose using AWS SDKs

The following code examples demonstrate how to perform individual Firehose actions with AWS
SDKs. Each example includes a link to GitHub, where you can find instructions for setting up and
running the code.

These excerpts call the Firehose API and are code excerpts from larger programs that must be run
in context. You can see actions in context in Scenarios for Firehose using AWS SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Data Firehose API Reference.

Examples

• Use PutRecord with an AWS SDK or CLI

• Use PutRecordBatch with an AWS SDK or CLI

Use PutRecord with an AWS SDK or CLI

The following code examples show how to use PutRecord.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Put records to Firehose

CLI

AWS CLI

To write a record to a stream

The following put-record example writes data to a stream. The data is encoded in Base64
format.

aws firehose put-record \
 --delivery-stream-name my-stream \
 --record '{"Data":"SGVsbG8gd29ybGQ="}'

Output:

Actions 346

https://docs.aws.amazon.com/firehose/latest/APIReference/Welcome.html

Amazon Data Firehose Developer Guide

{
 "RecordId": "RjB5K/nnoGFHqwTsZlNd/
TTqvjE8V5dsyXZTQn2JXrdpMTOwssyEb6nfC8fwf1whhwnItt4mvrn+gsqeK5jB7QjuLg283+Ps4Sz/
j1Xujv31iDhnPdaLw4BOyM9Amv7PcCuB2079RuM0NhoakbyUymlwY8yt20G8X2420wu1jlFafhci4erAt7QhDEvpwuK8N1uOQ1EuaKZWxQHDzcG6tk1E49IPeD9k",
 "Encrypted": false
}

For more information, see Sending Data to an Amazon Kinesis Data Firehose Delivery Stream
in the Amazon Kinesis Data Firehose Developer Guide.

• For API details, see PutRecord in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Puts a record to the specified Amazon Kinesis Data Firehose delivery
 stream.
 *
 * @param record The record to be put to the delivery stream. The record must
 be a {@link Map} of String keys and Object values.
 * @param deliveryStreamName The name of the Amazon Kinesis Data Firehose
 delivery stream to which the record should be put.
 * @throws IllegalArgumentException if the input record or delivery stream
 name is null or empty.
 * @throws RuntimeException if there is an error putting the record to the
 delivery stream.
 */
 public static void putRecord(Map<String, Object> record, String
 deliveryStreamName) {
 if (record == null || deliveryStreamName == null ||
 deliveryStreamName.isEmpty()) {
 throw new IllegalArgumentException("Invalid input: record or delivery
 stream name cannot be null/empty");

Actions 347

https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/firehose/put-record.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/firehose#code-examples

Amazon Data Firehose Developer Guide

 }
 try {
 String jsonRecord = new ObjectMapper().writeValueAsString(record);
 Record firehoseRecord = Record.builder()

 .data(SdkBytes.fromByteArray(jsonRecord.getBytes(StandardCharsets.UTF_8)))
 .build();

 PutRecordRequest putRecordRequest = PutRecordRequest.builder()
 .deliveryStreamName(deliveryStreamName)
 .record(firehoseRecord)
 .build();

 getFirehoseClient().putRecord(putRecordRequest);
 System.out.println("Record sent: " + jsonRecord);
 } catch (Exception e) {
 throw new RuntimeException("Failed to put record: " + e.getMessage(),
 e);
 }
 }

• For API details, see PutRecord in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class FirehoseClient:
 """
 AWS Firehose client to send records and monitor metrics.

 Attributes:
 config (object): Configuration object with delivery stream name and
 region.
 delivery_stream_name (str): Name of the Firehose delivery stream.

Actions 348

https://docs.aws.amazon.com/goto/SdkForJavaV2/firehose-2015-08-04/PutRecord
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/firehose#code-examples

Amazon Data Firehose Developer Guide

 region (str): AWS region for Firehose and CloudWatch clients.
 firehose (boto3.client): Boto3 Firehose client.
 cloudwatch (boto3.client): Boto3 CloudWatch client.
 """

 def __init__(self, config):
 """
 Initialize the FirehoseClient.

 Args:
 config (object): Configuration object with delivery stream name and
 region.
 """
 self.config = config
 self.delivery_stream_name = config.delivery_stream_name
 self.region = config.region
 self.firehose = boto3.client("firehose", region_name=self.region)
 self.cloudwatch = boto3.client("cloudwatch", region_name=self.region)

 @backoff.on_exception(
 backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter
)
 def put_record(self, record: dict):
 """
 Put individual records to Firehose with backoff and retry.

 Args:
 record (dict): The data record to be sent to Firehose.

 This method attempts to send an individual record to the Firehose
 delivery stream.
 It retries with exponential backoff in case of exceptions.
 """
 try:
 entry = self._create_record_entry(record)
 response = self.firehose.put_record(
 DeliveryStreamName=self.delivery_stream_name, Record=entry
)
 self._log_response(response, entry)
 except Exception:
 logger.info(f"Fail record: {record}.")
 raise

Actions 349

Amazon Data Firehose Developer Guide

• For API details, see PutRecord in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Firehose with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PutRecordBatch with an AWS SDK or CLI

The following code examples show how to use PutRecordBatch.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Put records to Firehose

CLI

AWS CLI

To write multiple records to a stream

The following put-record-batch example writes three records to a stream. The data is
encoded in Base64 format.

aws firehose put-record-batch \
 --delivery-stream-name my-stream \
 --records file://records.json

Contents of myfile.json:

[
 {"Data": "Rmlyc3QgdGhpbmc="},
 {"Data": "U2Vjb25kIHRoaW5n"},
 {"Data": "VGhpcmQgdGhpbmc="}
]

Output:

{

Actions 350

https://docs.aws.amazon.com/goto/boto3/firehose-2015-08-04/PutRecord

Amazon Data Firehose Developer Guide

 "FailedPutCount": 0,
 "Encrypted": false,
 "RequestResponses": [
 {
 "RecordId": "9D2OJ6t2EqCTZTXwGzeSv/EVHxRoRCw89xd+o3+sXg8DhYOaWKPSmZy/
CGlRVEys1u1xbeKh6VofEYKkoeiDrcjrxhQp9iF7sUW7pujiMEQ5LzlrzCkGosxQn
+3boDnURDEaD42V7GiixpOyLJkYZcae1i7HzlCEoy9LJhMr8EjDSi4Om/9Vc2uhwwuAtGE0XKpxJ2WD7ZRWtAnYlKAnvgSPRgg7zOWL"
 },
 {
 "RecordId": "jFirejqxCLlK5xjH/UNmlMVcjktEN76I7916X9PaZ
+PVaOSXDfU1WGOqEZhxq2js7xcZ552eoeDxsuTU1MSq9nZTbVfb6cQTIXnm/
GsuF37Uhg67GKmR5z90l6XKJ+/
+pDloFv7Hh9a3oUS6wYm3DcNRLTHHAimANp1PhkQvWpvLRfzbuCUkBphR2QVzhP9OiHLbzGwy8/
DfH8sqWEUYASNJKS8GXP5s"
 },
 {
 "RecordId":
 "oy0amQ40o5Y2YV4vxzufdcMOOw6n3EPr3tpPJGoYVNKH4APPVqNcbUgefo1stEFRg4hTLrf2k6eliHu/9+YJ5R3iiedHkdsfkIqX0XTySSutvgFYTjNY1TSrK0pM2sWxpjqqnk3+2UX1MV5z88xGro3cQm/
DTBt3qBlmTj7Xq8SKVbO1S7YvMTpWkMKA86f8JfmT8BMKoMb4XZS/sOkQLe+qh0sYKXWl"
 }
]
}

For more information, see Sending Data to an Amazon Kinesis Data Firehose Delivery Stream
in the Amazon Kinesis Data Firehose Developer Guide.

• For API details, see PutRecordBatch in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Puts a batch of records to an Amazon Kinesis Data Firehose delivery
 stream.
 *

Actions 351

https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/firehose/put-record-batch.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/firehose#code-examples

Amazon Data Firehose Developer Guide

 * @param records a list of maps representing the records to be
 sent
 * @param batchSize the maximum number of records to include in each
 batch
 * @param deliveryStreamName the name of the Kinesis Data Firehose delivery
 stream
 * @throws IllegalArgumentException if the input parameters are invalid (null
 or empty)
 * @throws RuntimeException if there is an error putting the record
 batch
 */
 public static void putRecordBatch(List<Map<String, Object>> records, int
 batchSize, String deliveryStreamName) {
 if (records == null || records.isEmpty() || deliveryStreamName == null ||
 deliveryStreamName.isEmpty()) {
 throw new IllegalArgumentException("Invalid input: records or
 delivery stream name cannot be null/empty");
 }
 ObjectMapper objectMapper = new ObjectMapper();

 try {
 for (int i = 0; i < records.size(); i += batchSize) {
 List<Map<String, Object>> batch = records.subList(i, Math.min(i +
 batchSize, records.size()));

 List<Record> batchRecords = batch.stream().map(record -> {
 try {
 String jsonRecord =
 objectMapper.writeValueAsString(record);
 return Record.builder()

 .data(SdkBytes.fromByteArray(jsonRecord.getBytes(StandardCharsets.UTF_8)))
 .build();
 } catch (Exception e) {
 throw new RuntimeException("Error creating Firehose
 record", e);
 }
 }).collect(Collectors.toList());

 PutRecordBatchRequest request = PutRecordBatchRequest.builder()
 .deliveryStreamName(deliveryStreamName)
 .records(batchRecords)
 .build();

Actions 352

Amazon Data Firehose Developer Guide

 PutRecordBatchResponse response =
 getFirehoseClient().putRecordBatch(request);

 if (response.failedPutCount() > 0) {
 response.requestResponses().stream()
 .filter(r -> r.errorCode() != null)
 .forEach(r -> System.err.println("Failed record: " +
 r.errorMessage()));
 }
 System.out.println("Batch sent with size: " +
 batchRecords.size());
 }
 } catch (Exception e) {
 throw new RuntimeException("Failed to put record batch: " +
 e.getMessage(), e);
 }
 }

• For API details, see PutRecordBatch in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class FirehoseClient:
 """
 AWS Firehose client to send records and monitor metrics.

 Attributes:
 config (object): Configuration object with delivery stream name and
 region.
 delivery_stream_name (str): Name of the Firehose delivery stream.
 region (str): AWS region for Firehose and CloudWatch clients.
 firehose (boto3.client): Boto3 Firehose client.
 cloudwatch (boto3.client): Boto3 CloudWatch client.

Actions 353

https://docs.aws.amazon.com/goto/SdkForJavaV2/firehose-2015-08-04/PutRecordBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/firehose#code-examples

Amazon Data Firehose Developer Guide

 """

 def __init__(self, config):
 """
 Initialize the FirehoseClient.

 Args:
 config (object): Configuration object with delivery stream name and
 region.
 """
 self.config = config
 self.delivery_stream_name = config.delivery_stream_name
 self.region = config.region
 self.firehose = boto3.client("firehose", region_name=self.region)
 self.cloudwatch = boto3.client("cloudwatch", region_name=self.region)

 @backoff.on_exception(
 backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter
)
 def put_record_batch(self, data: list, batch_size: int = 500):
 """
 Put records in batches to Firehose with backoff and retry.

 Args:
 data (list): List of data records to be sent to Firehose.
 batch_size (int): Number of records to send in each batch. Default is
 500.

 This method attempts to send records in batches to the Firehose delivery
 stream.
 It retries with exponential backoff in case of exceptions.
 """
 for i in range(0, len(data), batch_size):
 batch = data[i : i + batch_size]
 record_dicts = [{"Data": json.dumps(record)} for record in batch]
 try:
 response = self.firehose.put_record_batch(
 DeliveryStreamName=self.delivery_stream_name,
 Records=record_dicts
)
 self._log_batch_response(response, len(batch))
 except Exception as e:

Actions 354

Amazon Data Firehose Developer Guide

 logger.info(f"Failed to send batch of {len(batch)} records.
 Error: {e}")

• For API details, see PutRecordBatch in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn put_record_batch(
 client: &Client,
 stream: &str,
 data: Vec<Record>,
) -> Result<PutRecordBatchOutput, SdkError<PutRecordBatchError>> {
 client
 .put_record_batch()
 .delivery_stream_name(stream)
 .set_records(Some(data))
 .send()
 .await
}

• For API details, see PutRecordBatch in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Firehose with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 355

https://docs.aws.amazon.com/goto/boto3/firehose-2015-08-04/PutRecordBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/firehose#code-examples
https://docs.rs/aws-sdk-firehose/latest/aws_sdk_firehose/client/struct.Client.html#method.put_record_batch

Amazon Data Firehose Developer Guide

Scenarios for Firehose using AWS SDKs

The following code examples show you how to implement common scenarios in Firehose with AWS
SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Firehose or combined with other AWS services. Each scenario includes a link to the complete
source code, where you can find instructions on how to set up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Use Amazon Data Firehose to process individual and batch records

Use Amazon Data Firehose to process individual and batch records

The following code examples show how to use Firehose to process individual and batch records.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example puts individual and batch records to Firehose.

/**
 * Amazon Firehose Scenario example using Java V2 SDK.
 *
 * Demonstrates individual and batch record processing,
 * and monitoring Firehose delivery stream metrics.
 */
public class FirehoseScenario {

 private static FirehoseClient firehoseClient;
 private static CloudWatchClient cloudWatchClient;

Scenarios 356

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/firehose#code-examples

Amazon Data Firehose Developer Guide

 public static void main(String[] args) {
 final String usage = """
 Usage:
 <deliveryStreamName>
 Where:
 deliveryStreamName - The Firehose delivery stream name.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 return;
 }

 String deliveryStreamName = args[0];

 try {
 // Read and parse sample data.
 String jsonContent = readJsonFile("sample_records.json");
 ObjectMapper objectMapper = new ObjectMapper();
 List<Map<String, Object>> sampleData =
 objectMapper.readValue(jsonContent, new TypeReference<>() {});

 // Process individual records.
 System.out.println("Processing individual records...");
 sampleData.subList(0, 100).forEach(record -> {
 try {
 putRecord(record, deliveryStreamName);
 } catch (Exception e) {
 System.err.println("Error processing record: " +
 e.getMessage());
 }
 });

 // Monitor metrics.
 monitorMetrics(deliveryStreamName);

 // Process batch records.
 System.out.println("Processing batch records...");
 putRecordBatch(sampleData.subList(100, sampleData.size()), 500,
 deliveryStreamName);
 monitorMetrics(deliveryStreamName);

 } catch (Exception e) {
 System.err.println("Scenario failed: " + e.getMessage());

Put records to Firehose 357

Amazon Data Firehose Developer Guide

 } finally {
 closeClients();
 }
 }

 private static FirehoseClient getFirehoseClient() {
 if (firehoseClient == null) {
 firehoseClient = FirehoseClient.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return firehoseClient;
 }

 private static CloudWatchClient getCloudWatchClient() {
 if (cloudWatchClient == null) {
 cloudWatchClient = CloudWatchClient.builder()
 .region(Region.US_EAST_1)
 .build();
 }
 return cloudWatchClient;
 }

 /**
 * Puts a record to the specified Amazon Kinesis Data Firehose delivery
 stream.
 *
 * @param record The record to be put to the delivery stream. The record must
 be a {@link Map} of String keys and Object values.
 * @param deliveryStreamName The name of the Amazon Kinesis Data Firehose
 delivery stream to which the record should be put.
 * @throws IllegalArgumentException if the input record or delivery stream
 name is null or empty.
 * @throws RuntimeException if there is an error putting the record to the
 delivery stream.
 */
 public static void putRecord(Map<String, Object> record, String
 deliveryStreamName) {
 if (record == null || deliveryStreamName == null ||
 deliveryStreamName.isEmpty()) {
 throw new IllegalArgumentException("Invalid input: record or delivery
 stream name cannot be null/empty");
 }
 try {

Put records to Firehose 358

Amazon Data Firehose Developer Guide

 String jsonRecord = new ObjectMapper().writeValueAsString(record);
 Record firehoseRecord = Record.builder()

 .data(SdkBytes.fromByteArray(jsonRecord.getBytes(StandardCharsets.UTF_8)))
 .build();

 PutRecordRequest putRecordRequest = PutRecordRequest.builder()
 .deliveryStreamName(deliveryStreamName)
 .record(firehoseRecord)
 .build();

 getFirehoseClient().putRecord(putRecordRequest);
 System.out.println("Record sent: " + jsonRecord);
 } catch (Exception e) {
 throw new RuntimeException("Failed to put record: " + e.getMessage(),
 e);
 }
 }

 /**
 * Puts a batch of records to an Amazon Kinesis Data Firehose delivery
 stream.
 *
 * @param records a list of maps representing the records to be
 sent
 * @param batchSize the maximum number of records to include in each
 batch
 * @param deliveryStreamName the name of the Kinesis Data Firehose delivery
 stream
 * @throws IllegalArgumentException if the input parameters are invalid (null
 or empty)
 * @throws RuntimeException if there is an error putting the record
 batch
 */
 public static void putRecordBatch(List<Map<String, Object>> records, int
 batchSize, String deliveryStreamName) {
 if (records == null || records.isEmpty() || deliveryStreamName == null ||
 deliveryStreamName.isEmpty()) {
 throw new IllegalArgumentException("Invalid input: records or
 delivery stream name cannot be null/empty");
 }
 ObjectMapper objectMapper = new ObjectMapper();

Put records to Firehose 359

Amazon Data Firehose Developer Guide

 try {
 for (int i = 0; i < records.size(); i += batchSize) {
 List<Map<String, Object>> batch = records.subList(i, Math.min(i +
 batchSize, records.size()));

 List<Record> batchRecords = batch.stream().map(record -> {
 try {
 String jsonRecord =
 objectMapper.writeValueAsString(record);
 return Record.builder()

 .data(SdkBytes.fromByteArray(jsonRecord.getBytes(StandardCharsets.UTF_8)))
 .build();
 } catch (Exception e) {
 throw new RuntimeException("Error creating Firehose
 record", e);
 }
 }).collect(Collectors.toList());

 PutRecordBatchRequest request = PutRecordBatchRequest.builder()
 .deliveryStreamName(deliveryStreamName)
 .records(batchRecords)
 .build();

 PutRecordBatchResponse response =
 getFirehoseClient().putRecordBatch(request);

 if (response.failedPutCount() > 0) {
 response.requestResponses().stream()
 .filter(r -> r.errorCode() != null)
 .forEach(r -> System.err.println("Failed record: " +
 r.errorMessage()));
 }
 System.out.println("Batch sent with size: " +
 batchRecords.size());
 }
 } catch (Exception e) {
 throw new RuntimeException("Failed to put record batch: " +
 e.getMessage(), e);
 }
 }

 public static void monitorMetrics(String deliveryStreamName) {
 Instant endTime = Instant.now();

Put records to Firehose 360

Amazon Data Firehose Developer Guide

 Instant startTime = endTime.minusSeconds(600);

 List<String> metrics = List.of("IncomingBytes", "IncomingRecords",
 "FailedPutCount");
 metrics.forEach(metric -> monitorMetric(metric, startTime, endTime,
 deliveryStreamName));
 }

 private static void monitorMetric(String metricName, Instant startTime,
 Instant endTime, String deliveryStreamName) {
 try {
 GetMetricStatisticsRequest request =
 GetMetricStatisticsRequest.builder()
 .namespace("AWS/Firehose")
 .metricName(metricName)

 .dimensions(Dimension.builder().name("DeliveryStreamName").value(deliveryStreamName).build())
 .startTime(startTime)
 .endTime(endTime)
 .period(60)
 .statistics(Statistic.SUM)
 .build();

 GetMetricStatisticsResponse response =
 getCloudWatchClient().getMetricStatistics(request);
 double totalSum =
 response.datapoints().stream().mapToDouble(Datapoint::sum).sum();
 System.out.println(metricName + ": " + totalSum);
 } catch (Exception e) {
 System.err.println("Failed to monitor metric " + metricName + ": " +
 e.getMessage());
 }
 }

 public static String readJsonFile(String fileName) throws IOException {
 try (InputStream inputStream =
 FirehoseScenario.class.getResourceAsStream("/" + fileName);
 Scanner scanner = new Scanner(inputStream, StandardCharsets.UTF_8))
 {
 return scanner.useDelimiter("\\\\A").next();
 } catch (Exception e) {
 throw new RuntimeException("Error reading file: " + fileName, e);
 }
 }

Put records to Firehose 361

Amazon Data Firehose Developer Guide

 private static void closeClients() {
 try {
 if (firehoseClient != null) firehoseClient.close();
 if (cloudWatchClient != null) cloudWatchClient.close();
 } catch (Exception e) {
 System.err.println("Error closing clients: " + e.getMessage());
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• PutRecord

• PutRecordBatch

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This script puts individual and batch records to Firehose.

import json
import logging
import random
from datetime import datetime, timedelta

import backoff
import boto3

from config import get_config

def load_sample_data(path: str) -> dict:
 """

Put records to Firehose 362

https://docs.aws.amazon.com/goto/SdkForJavaV2/firehose-2015-08-04/PutRecord
https://docs.aws.amazon.com/goto/SdkForJavaV2/firehose-2015-08-04/PutRecordBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/firehose/scenarios/firehose-put-actions#code-examples

Amazon Data Firehose Developer Guide

 Load sample data from a JSON file.

 Args:
 path (str): The file path to the JSON file containing sample data.

 Returns:
 dict: The loaded sample data as a dictionary.
 """
 with open(path, "r") as f:
 return json.load(f)

Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class FirehoseClient:
 """
 AWS Firehose client to send records and monitor metrics.

 Attributes:
 config (object): Configuration object with delivery stream name and
 region.
 delivery_stream_name (str): Name of the Firehose delivery stream.
 region (str): AWS region for Firehose and CloudWatch clients.
 firehose (boto3.client): Boto3 Firehose client.
 cloudwatch (boto3.client): Boto3 CloudWatch client.
 """

 def __init__(self, config):
 """
 Initialize the FirehoseClient.

 Args:
 config (object): Configuration object with delivery stream name and
 region.
 """
 self.config = config
 self.delivery_stream_name = config.delivery_stream_name
 self.region = config.region
 self.firehose = boto3.client("firehose", region_name=self.region)
 self.cloudwatch = boto3.client("cloudwatch", region_name=self.region)

Put records to Firehose 363

Amazon Data Firehose Developer Guide

 @backoff.on_exception(
 backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter
)
 def put_record(self, record: dict):
 """
 Put individual records to Firehose with backoff and retry.

 Args:
 record (dict): The data record to be sent to Firehose.

 This method attempts to send an individual record to the Firehose
 delivery stream.
 It retries with exponential backoff in case of exceptions.
 """
 try:
 entry = self._create_record_entry(record)
 response = self.firehose.put_record(
 DeliveryStreamName=self.delivery_stream_name, Record=entry
)
 self._log_response(response, entry)
 except Exception:
 logger.info(f"Fail record: {record}.")
 raise

 @backoff.on_exception(
 backoff.expo, Exception, max_tries=5, jitter=backoff.full_jitter
)
 def put_record_batch(self, data: list, batch_size: int = 500):
 """
 Put records in batches to Firehose with backoff and retry.

 Args:
 data (list): List of data records to be sent to Firehose.
 batch_size (int): Number of records to send in each batch. Default is
 500.

 This method attempts to send records in batches to the Firehose delivery
 stream.
 It retries with exponential backoff in case of exceptions.
 """
 for i in range(0, len(data), batch_size):
 batch = data[i : i + batch_size]

Put records to Firehose 364

Amazon Data Firehose Developer Guide

 record_dicts = [{"Data": json.dumps(record)} for record in batch]
 try:
 response = self.firehose.put_record_batch(
 DeliveryStreamName=self.delivery_stream_name,
 Records=record_dicts
)
 self._log_batch_response(response, len(batch))
 except Exception as e:
 logger.info(f"Failed to send batch of {len(batch)} records.
 Error: {e}")

 def get_metric_statistics(
 self,
 metric_name: str,
 start_time: datetime,
 end_time: datetime,
 period: int,
 statistics: list = ["Sum"],
) -> list:
 """
 Retrieve metric statistics from CloudWatch.

 Args:
 metric_name (str): The name of the metric.
 start_time (datetime): The start time for the metric statistics.
 end_time (datetime): The end time for the metric statistics.
 period (int): The granularity, in seconds, of the returned data
 points.
 statistics (list): A list of statistics to retrieve. Default is
 ['Sum'].

 Returns:
 list: List of datapoints containing the metric statistics.
 """
 response = self.cloudwatch.get_metric_statistics(
 Namespace="AWS/Firehose",
 MetricName=metric_name,
 Dimensions=[
 {"Name": "DeliveryStreamName", "Value":
 self.delivery_stream_name},
],
 StartTime=start_time,
 EndTime=end_time,

Put records to Firehose 365

Amazon Data Firehose Developer Guide

 Period=period,
 Statistics=statistics,
)
 return response["Datapoints"]

 def monitor_metrics(self):
 """
 Monitor Firehose metrics for the last 5 minutes.

 This method retrieves and logs the 'IncomingBytes', 'IncomingRecords',
 and 'FailedPutCount' metrics
 from CloudWatch for the last 5 minutes.
 """
 end_time = datetime.utcnow()
 start_time = end_time - timedelta(minutes=10)
 period = int((end_time - start_time).total_seconds())

 metrics = {
 "IncomingBytes": self.get_metric_statistics(
 "IncomingBytes", start_time, end_time, period
),
 "IncomingRecords": self.get_metric_statistics(
 "IncomingRecords", start_time, end_time, period
),
 "FailedPutCount": self.get_metric_statistics(
 "FailedPutCount", start_time, end_time, period
),
 }

 for metric, datapoints in metrics.items():
 if datapoints:
 total_sum = sum(datapoint["Sum"] for datapoint in datapoints)
 if metric == "IncomingBytes":
 logger.info(
 f"{metric}: {round(total_sum)} ({total_sum / (1024 *
 1024):.2f} MB)"
)
 else:
 logger.info(f"{metric}: {round(total_sum)}")
 else:
 logger.info(f"No data found for {metric} over the last 5
 minutes")

Put records to Firehose 366

Amazon Data Firehose Developer Guide

 def _create_record_entry(self, record: dict) -> dict:
 """
 Create a record entry for Firehose.

 Args:
 record (dict): The data record to be sent.

 Returns:
 dict: The record entry formatted for Firehose.

 Raises:
 Exception: If a simulated network error occurs.
 """
 if random.random() < 0.2:
 raise Exception("Simulated network error")
 elif random.random() < 0.1:
 return {"Data": '{"malformed": "data"'}
 else:
 return {"Data": json.dumps(record)}

 def _log_response(self, response: dict, entry: dict):
 """
 Log the response from Firehose.

 Args:
 response (dict): The response from the Firehose put_record API call.
 entry (dict): The record entry that was sent.
 """
 if response["ResponseMetadata"]["HTTPStatusCode"] == 200:
 logger.info(f"Sent record: {entry}")
 else:
 logger.info(f"Fail record: {entry}")

 def _log_batch_response(self, response: dict, batch_size: int):
 """
 Log the batch response from Firehose.

 Args:
 response (dict): The response from the Firehose put_record_batch API
 call.
 batch_size (int): The number of records in the batch.
 """
 if response.get("FailedPutCount", 0) > 0:
 logger.info(

Put records to Firehose 367

Amazon Data Firehose Developer Guide

 f'Failed to send {response["FailedPutCount"]} records in batch of
 {batch_size}'
)
 else:
 logger.info(f"Successfully sent batch of {batch_size} records")

if __name__ == "__main__":
 config = get_config()
 data = load_sample_data(config.sample_data_file)
 client = FirehoseClient(config)

 # Process the first 100 sample network records
 for record in data[:100]:
 try:
 client.put_record(record)
 except Exception as e:
 logger.info(f"Put record failed after retries and backoff: {e}")
 client.monitor_metrics()

 # Process remaining records using the batch method
 try:
 client.put_record_batch(data[100:])
 except Exception as e:
 logger.info(f"Put record batch failed after retries and backoff: {e}")
 client.monitor_metrics()

This file contains config for the above script.

class Config:
 def __init__(self):
 self.delivery_stream_name = "ENTER YOUR DELIVERY STREAM NAME HERE"
 self.region = "us-east-1"
 self.sample_data_file = (
 "../../../../../scenarios/features/firehose/resources/
sample_records.json"
)

def get_config():
 return Config()

Put records to Firehose 368

Amazon Data Firehose Developer Guide

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• PutRecord

• PutRecordBatch

For a complete list of AWS SDK developer guides and code examples, see Using Firehose with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Put records to Firehose 369

https://docs.aws.amazon.com/goto/boto3/firehose-2015-08-04/PutRecord
https://docs.aws.amazon.com/goto/boto3/firehose-2015-08-04/PutRecordBatch

Amazon Data Firehose Developer Guide

Troubleshoot errors in Amazon Data Firehose

If Firehose encounters errors while delivering or processing data, it retries until the configured retry
duration expires. If the retry duration ends before the data is delivered successfully, Firehose backs
up the data to the configured S3 backup bucket. If the destination is Amazon S3 and delivery fails
or if delivery to the backup S3 bucket fails, Firehose keeps retrying until the retention period ends.

For information about tracking delivery errors using CloudWatch, see the section called “Monitor
with CloudWatch Logs”.

Direct PUT

For DirectPut Firehose streams, Firehose retains the records for 24 hours. For a Firehose
stream whose data source is a Kinesis data stream, you can change the retention period as
described in Changing the Data Retention Period. In this case, Firehose retries the following
operations indefinitely: DescribeStream, GetRecords, and GetShardIterator.

If the Firehose stream uses DirectPut, check the IncomingBytes and IncomingRecords
metrics to see if there's incoming traffic. If you are using the PutRecord or PutRecordBatch,
make sure you catch exceptions and retry. We recommend a retry policy with exponential back-
off with jitter and several retries. Also, if you use the PutRecordBatch API, make sure your
code checks the value of FailedPutCount in the response even when the API call succeeds.

Kinesis Data Stream

If the Firehose stream uses a Kinesis data stream as its source, check the IncomingBytes
and IncomingRecords metrics for the source data stream. Additionally, ensure that the
DataReadFromKinesisStream.Bytes and DataReadFromKinesisStream.Records
metrics are being emitted for the Firehose stream.

Common issues

The following are troubleshooting tips to help you solve common issues while you work with a
Firehose stream.

Firehose stream unavailable

Firehose stream is not available as a target for CloudWatch Logs, CloudWatch Events, or AWS IoT
action as some AWS services can only send messages and events to a Firehose stream that is in the

Common issues 370

https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html#Firehose-PutRecordBatch-response-FailedPutCount

Amazon Data Firehose Developer Guide

same AWS Region. Verify that your Firehose stream is located in the same Region as your other
services.

No data at destination

If there are no data ingestion problems and the metrics emitted for the Firehose stream look good,
but you don't see the data at the destination, check the reader logic. Make sure your reader is
correctly parsing out all data.

Data freshness metric increasing or not emitted

Data freshness is a measure of how current your data is within your Firehose stream. It is the age of
the oldest data record in the Firehose stream, measured from the time that Firehose ingested the
data to the present time. Firehose provides metrics that you can use to monitor data freshness. To
identify the data-freshness metric for a given destination, see the section called “Monitoring with
CloudWatch Metrics”.

If you enable backup for all events or all documents, monitor two separate data-freshness metrics:
one for the main destination and one for the backup.

If the data-freshness metric isn't being emitted, this means that there is no active delivery for
the Firehose stream. This happens when data delivery is completely blocked or when there's no
incoming data.

If the data-freshness metric is constantly increasing, this means that data delivery is falling behind.
This can happen for one of the following reasons.

• The destination can't handle the rate of delivery. If Firehose encounters transient errors due to
high traffic, then the delivery might fall behind. This can happen for destinations other than
Amazon S3 (it can happen for OpenSearch Service, Amazon Redshift, or Splunk). Ensure that
your destination has enough capacity to handle the incoming traffic.

• The destination is slow. Data delivery might fall behind if Firehose encounters high latency.
Monitor the destination's latency metric.

• The Lambda function is slow. This might lead to a data delivery rate that is less than the data
ingestion rate for the Firehose stream. If possible, improve the efficiency of the Lambda function.
For instance, if the function does network IO, use multiple threads or asynchronous IO to
increase parallelism. Also, consider increasing the memory size of the Lambda function so that
the CPU allocation can increase accordingly. This might lead to faster Lambda invocations. For
information about configuring Lambda functions, see Configuring AWS Lambda Functions.

No data at destination 371

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

Amazon Data Firehose Developer Guide

• There are failures during data delivery. For information about how to monitor errors using
Amazon CloudWatch Logs, see the section called “Monitor with CloudWatch Logs”.

• If the data source of the Firehose stream is a Kinesis data stream, throttling might be
happening. Check the ThrottledGetRecords, ThrottledGetShardIterator, and
ThrottledDescribeStream metrics. If there are multiple consumers attached to the Kinesis
data stream, consider the following:

• If the ThrottledGetRecords and ThrottledGetShardIterator metrics are high, we
recommend you increase the number of shards provisioned for the data stream.

• If the ThrottledDescribeStream is high, we recommend you
add the kinesis:listshards permission to the role configured in
KinesisStreamSourceConfiguration.

• Low buffering hints for the destination. This might increase the number of round trips that
Firehose needs to make to the destination, which might cause delivery to fall behind. Consider
increasing the value of the buffering hints. For more information, see BufferingHints.

• A high retry duration might cause delivery to fall behind when the errors are frequent. Consider
reducing the retry duration. Also, monitor the errors and try to reduce them. For information
about how to monitor errors using Amazon CloudWatch Logs, see the section called “Monitor
with CloudWatch Logs”.

• If the destination is Splunk and DeliveryToSplunk.DataFreshness is high but
DeliveryToSplunk.Success looks good, the Splunk cluster might be busy. Free the Splunk
cluster if possible. Alternatively, contact AWS Support and request an increase in the number of
channels that Firehose is using to communicate with the Splunk cluster.

Record format conversion to Apache Parquet fails

This happens if you take DynamoDB data that includes the Set type, stream it through Lambda
to a Firehose stream, and use an AWS Glue Data Catalog to convert the record format to Apache
Parquet.

When the AWS Glue crawler indexes the DynamoDB set data types (StringSet, NumberSet,
and BinarySet), it stores them in the data catalog as SET<STRING>, SET<BIGINT>, and
SET<BINARY>, respectively. However, for Firehose to convert the data records to the Apache
Parquet format, it requires Apache Hive data types. Because the set types aren't valid Apache Hive
data types, conversion fails. To get conversion to work, update the data catalog with Apache Hive
data types. You can do that by changing set to array in the data catalog.

Record format conversion to Apache Parquet fails 372

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html#Firehose-CreateDeliveryStream-request-KinesisStreamSourceConfiguration
https://docs.aws.amazon.com/firehose/latest/APIReference/API_BufferingHints.html

Amazon Data Firehose Developer Guide

To change one or more data types from set to array in an AWS Glue data catalog

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. In the left pane, under the Data catalog heading, choose Tables.

3. In the list of tables, choose the name of the table where you need to modify one or more data
types. This takes you to the details page for the table.

4. Choose the Edit schema button in the top right corner of the details page.

5. In the Data type column choose the first set data type.

6. In the Column type drop-down list, change the type from set to array.

7. In the ArraySchema field, enter array<string>, array<int>, or array<binary>,
depending on the appropriate type of data for your scenario.

8. Choose Update.

9. Repeat the previous steps to convert other set types to array types.

10. Choose Save.

Missing fields for transformed object for Lambda

When you use Lambda data transformation to change JSON data to Parquet object, some fields
might be missing after the transformation. It happens if your JSON object has capital letters
and the case sensitivity is set to false, which can lead to a mismatch in JSON keys after data
transformation causing missing data in the resulting Parquet object in the s3 bucket.

To fix this, make sure the hose configuration has the deserializationOption:
case.insensitive set to true so that the JSON keys matches after the transformation.

Troubleshooting Amazon S3

Check the following if data is not delivered to your Amazon Simple Storage Service (Amazon S3)
bucket.

• Check the Firehose IncomingBytes and IncomingRecords metrics to make sure that data
is sent to your Firehose stream successfully. For more information, see Monitor Amazon Data
Firehose with CloudWatch metrics.

Missing fields for transformed object for Lambda 373

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

Amazon Data Firehose Developer Guide

• If data transformation with Lambda is enabled, check the Firehose
ExecuteProcessingSuccess metric to make sure that Firehose has tried to invoke your
Lambda function. For more information, see Monitor Amazon Data Firehose with CloudWatch
metrics.

• Check the Firehose DeliveryToS3.Success metric to make sure that Firehose has tried
putting data to your Amazon S3 bucket. For more information, see Monitor Amazon Data
Firehose with CloudWatch metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitor Amazon Data Firehose Using CloudWatch Logs.

• If you see an error message in the log saying “Firehose encountered InternalServerError when
calling Amazon S3 service. The operation will be retried; if the error persists, please contact S3 for
resolution.”, it could be due to the significant increase in request rates on a single partition in S3.
You can optimize S3 prefix design patterns to mitigate the issue. For more information, see Best
practices design patterns: optimizing Amazon S3 performance. If this does not resolve the issue,
contact AWS Support for further assistance.

• Make sure that the Amazon S3 bucket that is specified in your Firehose stream still exists.

• If data transformation with Lambda is enabled, make sure that the Lambda function that is
specified in your Firehose stream still exists.

• Make sure that the IAM role that is specified in your Firehose stream has access to your S3 bucket
and your Lambda function (if data transformation is enabled). Also, make sure that the IAM role
has access to CloudWatch log group and log streams to check error logs. For more information,
see Grant Firehose access to an Amazon S3 destination.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

Troubleshooting Amazon Redshift

Check the following if data is not delivered to your Amazon Redshift provisioned cluster or Amazon
Redshift Serverless workgroup.

Data is delivered to your S3 bucket before loading into Amazon Redshift. If the data was not
delivered to your S3 bucket, see Troubleshooting Amazon S3.

Troubleshooting Amazon Redshift 374

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html

Amazon Data Firehose Developer Guide

• Check the Firehose DeliveryToRedshift.Success metric to make sure that Firehose has
tried to copy data from your S3 bucket to the Amazon Redshift provisioned cluster or Amazon
Redshift Serverless workgroup. For more information, see Monitor Amazon Data Firehose with
CloudWatch metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitor Amazon Data Firehose Using CloudWatch Logs.

• Check the Amazon Redshift STL_CONNECTION_LOG table to see if Firehose can make successful
connections. In this table, you should be able to see connections and their status based on a
user name. For more information, see STL_CONNECTION_LOG in the Amazon Redshift Database
Developer Guide.

• If the previous check shows that connections are being established, check the Amazon Redshift
STL_LOAD_ERRORS table to verify the reason for the COPY failure. For more information, see
STL_LOAD_ERRORS in the Amazon Redshift Database Developer Guide.

• Make sure that the Amazon Redshift configuration in your Firehose stream is accurate and valid.

• Make sure that the IAM role that is specified in your Firehose stream can access the S3 bucket
that Amazon Redshift copies data from, and also the Lambda function for data transformation (if
data transformation is enabled). Also, make sure that the IAM role has access to CloudWatch log
group and log streams to check error logs. For more information, see Grant Firehose access to an
Amazon Redshift destination .

• If your Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup is in a
virtual private cloud (VPC), make sure that the cluster allows access from Firehose IP addresses.
For more information, see Grant Firehose access to an Amazon Redshift destination .

• Make sure that the Amazon Redshift provisioned cluster or Amazon Redshift Serverless
workgroup is publicly available.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

Troubleshooting Amazon OpenSearch Service

Check the following if data is not delivered to your OpenSearch Service domain.

Data can be backed up to your Amazon S3 bucket concurrently. If data was not delivered to your S3
bucket, see Troubleshooting Amazon S3.

Troubleshooting Amazon OpenSearch Service 375

https://docs.aws.amazon.com/redshift/latest/dg/r_STL_CONNECTION_LOG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_LOAD_ERRORS.html

Amazon Data Firehose Developer Guide

• Check the Firehose IncomingBytes and IncomingRecords metrics to make sure that data
is sent to your Firehose stream successfully. For more information, see Monitor Amazon Data
Firehose with CloudWatch metrics.

• If data transformation with Lambda is enabled, check the Firehose
ExecuteProcessingSuccess metric to make sure that Firehose has tried to invoke your
Lambda function. For more information, see Monitor Amazon Data Firehose with CloudWatch
metrics.

• Check the Firehose DeliveryToAmazonOpenSearchService.Success metric to make sure
that Firehose has tried to index data to the OpenSearch Service cluster. For more information,
see Monitor Amazon Data Firehose with CloudWatch metrics.

• Enable error logging if it is not already enabled, and check error logs for delivery failure. For
more information, see Monitor Amazon Data Firehose Using CloudWatch Logs.

• Make sure that the OpenSearch Service configuration in your Firehose stream is accurate and
valid.

• If data transformation with Lambda is enabled, make sure that the Lambda function that is
specified in your Firehose stream still exists. Also, make sure that the IAM role has access to
CloudWatch log group and log streams to check error logs. For more information, see Grant
FirehoseAccess to a Public OpenSearch Service Destination.

• Make sure that the IAM role that is specified in your Firehose stream can access your OpenSearch
Service cluster, S3 backup bucket, and Lambda function (if data transformation is enabled).
Also, make sure that the IAM role has access to CloudWatch log group and log streams to check
error logs. For more information, see Grant Firehose access to a public OpenSearch Service
destination.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data
FirehoseData Transformation.

• Amazon Data Firehosecurrently does not support the delivery of CloudWatch Logs to Amazon
OpenSearch Service destination because Amazon CloudWatch combines multiple log events
into one Firehose record and Amazon OpenSearch Service cannot accept multiple log events in
one record. As an alternative, you can consider Using subscription filter for Amazon OpenSearch
Service in CloudWatch Logs.

Troubleshooting Amazon OpenSearch Service 376

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-es
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html

Amazon Data Firehose Developer Guide

Troubleshooting Splunk

Check the following if data is not delivered to your Splunk endpoint.

• If your Splunk platform is in a VPC, make sure that Firehose can access it. For more information,
see Accessing Splunk in VPC.

• If you use an AWS load balancer, make sure that it is a Classic Load Balancer or an Application
Load Balancer. Also, enable duration-based sticky sessions with cookie expiration disabled
for Classic Load Balancer and expiration is set to the maximum (7 days) for Application Load
Balancer. For information about how to do this, see Duration-Based Session Stickiness for Classic
Load Balancer or an Application Load Balancer.

• Review the Splunk platform requirements. The Splunk add-on for Firehose requires Splunk
platform version 6.6.X or later. For more information, see Splunk Add-on for Amazon Kinesis
Firehose.

• If you have a proxy (Elastic Load Balancing or other) between Firehose and the HTTP Event
Collector (HEC) node, enable sticky sessions to support HEC acknowledgements (ACKs).

• Make sure that you are using a valid HEC token.

• Ensure that the HEC token is enabled.

• Check whether the data that you're sending to Splunk is formatted correctly. For more
information, see Format events for HTTP Event Collector.

• Make sure that the HEC token and input event are configured with a valid index.

• When an upload to Splunk fails due to a server error from the HEC node, the request is
automatically retried. If all retries fail, the data gets backed up to Amazon S3. Check if your data
appears in Amazon S3, which is an indication of such a failure.

• Make sure that you enabled indexer acknowledgment on your HEC token.

• Increase the value of HECAcknowledgmentTimeoutInSeconds in the Splunk destination
configuration of your Firehose stream.

• Increase the value of DurationInSeconds under RetryOptions in the Splunk destination
configuration of your Firehose stream.

• Check your HEC health.

• If you're using data transformation, make sure that your Lambda function never returns
responses whose payload size exceeds 6 MB. For more information, see Amazon Data Firehose
Data Transformation.

Troubleshooting Splunk 377

https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html#enable-sticky-sessions-duration
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Hardwareandsoftwarerequirements
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Hardwareandsoftwarerequirements
http://docs.splunk.com/Documentation/Splunk/7.0.3/Data/FormateventsforHTTPEventCollector

Amazon Data Firehose Developer Guide

• Make sure that the Splunk parameter named ackIdleCleanup is set to true. It is false by
default. To set this parameter to true, do the following:

• For a managed Splunk Cloud deployment, submit a case using the Splunk support portal. In
this case, ask Splunk support to enable the HTTP event collector, set ackIdleCleanup to
true in inputs.conf, and create or modify a load balancer to use with this add-on.

• For a distributed Splunk Enterprise deployment, set the ackIdleCleanup parameter to true
in the inputs.conf file. For *nix users, this file is located under $SPLUNK_HOME/etc/apps/
splunk_httpinput/local/. For Windows users, it is under %SPLUNK_HOME%\etc\apps
\splunk_httpinput\local\.

• For a single-instance Splunk Enterprise deployment, set the ackIdleCleanup parameter to
true in the inputs.conf file. For *nix users, this file is located under $SPLUNK_HOME/etc/
apps/splunk_httpinput/local/. For Windows users, it is under %SPLUNK_HOME%\etc
\apps\splunk_httpinput\local\.

• Make sure that the IAM role that is specified in your Firehose stream can access the S3 backup
bucket and the Lambda function for data transformation (if data transformation is enabled).
Also, make sure that the IAM role has access to CloudWatch Logs group and log streams to check
error logs. For more information, see Grant FirehoseAccess to a Splunk Destination.

• To redrive the data that was delivered to S3 error bucket (S3 backup) back to Splunk, follow the
steps mentioned in the Splunk documentation.

• See Troubleshoot the Splunk Add-on for Amazon Kinesis Firehose.

Troubleshooting Snowflake

This section describes common troubleshooting steps while using Snowflake as a destination

Firehose stream creation fails

If Firehose stream creation fails for a stream delivering data to a PrivateLink-enabled Snowflake
Cluster, it indicates that the VPCE-ID is not reachable by Firehose. This can be due to one of the
following reasons:

• Incorrect VPCE-ID. Confirm that there are no typographic errors.

• Firehose does not support region-less Snowflake URLs in preview. Provide the URL using
Snowflake Account Locator. See Snowflake documentation for more details.

• Confirm that the Firehose stream is created in the same AWS Region as the Snowflake Region.

Troubleshooting Snowflake 378

http://docs.splunk.com/Documentation/AddOns/released/Firehose/RequestFirehose
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureHECdistributed
http://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureHECsingle
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk
https://www.splunk.com/en_us/blog/tips-and-tricks/aws-technical-add-on-simplifying-error-data-re-ingestion.html
http://docs.splunk.com/Documentation/AddOns/released/Firehose/Troubleshoot
https://docs.snowflake.com/en/user-guide/admin-account-identifier#format-2-legacy-account-locator-in-a-region

Amazon Data Firehose Developer Guide

• If the issue persists, reach out to AWS support.

Delivery failures

Check the following if data is not getting delivered to your Snowflake table. Snowflake delivery
failed data will be delivered to the S3 error bucket along with an error code and an error message
that corresponds to the payload. Following are few a common error scenarios. For the entire list of
error codes, see Snowflake Data delivery errors.

• Error code: Snowflake.DefaultRoleMissing: Indicates that snowflake role is not configured while
creating Firehose stream. If Snowflake role is not configured, make sure you set a default role to
the Snowflake user specified.

• Error code: Snowflake.ExtraColumns: Indicates that insert to Snowflake is rejected due to
extra columns in the input payload. Columns not present in table shouldn’t be specified. Note
that Snowflake column names are case-sensitive. If the delivery is failing with this error despite
column being present in table, make sure that the case of the column name in input payload
matches the column name declared in table definition.

• Error code: Snowflake.MissingColumns: Indicates that insert to Snowflake is rejected due
to missing columns in input payload. Make sure that values are specified for all non-nullable
columns.

• Error code: Snowflake.InvalidInput: This could happen when Firehose failed to parse the input
payload provided into valid JSON format. Make sure that the json payload is well formed, doesn’t
have extra double quotes, quotes, escape characters etc. Currently Firehose supports only single
JSON item as record payload, JSON arrays are not supported.

• Error code: Snowflake.InvalidValue: Indicates that delivery failed due to incorrect data type
in the input payload. Make sure that the JSON values specified in input payload adhere to the
datatype declared in Snowflake table definition.

• Error code: Snowflake.InvalidTableType: Indicates that table type configured in the Firehose
stream is not supported. Refer to the limitations at Limitations) of snowpipe streaming for the
supported tables, columns and data types.

Note

For any reason, if the table definition or role permissions are changed on your Snowflake
destination after creating the Firehose stream, it can take several minutes for Firehose

Firehose stream creation fails 379

https://docs.snowflake.com/en/user-guide/data-load-snowpipe-streaming-overview#limitations

Amazon Data Firehose Developer Guide

to detect those changes. If you are seeing delivery errors due to this, try deleting and
recreating the Firehose stream.

Troubleshooting Firehose endpoint reachability

If the Firehose API encounters a timeout, perform the following steps to test endpoint reachability:

• Check if API requests are made from a host in a VPC. All traffic from a VPC requires setting up a
Firehose VPC endpoint. For more information, see Using Firehose with AWS PrivateLink.

• If traffic is coming from a public network or VPC with the Firehose VPC endpoint set up in a
particular subnet, run the following commands from the host to check network connectivity. The
Firehose endpoint can be found at Firehose endpoints and quotas.

• Use tools like traceroute or tcping to check if the network setup is correct. If that fails, check
your network setting:

For example:

traceroute firehose.us-east-2.amazonaws.com

or

tcping firehose.us-east-2.amazonaws.com 443

• If it appears the network setting is correct and the following command fails, check whether the
Amazon CA (Certficate Authority) is in the trust chain.

For example:

curl firehose.us-east-2.amazonaws.com

If the above commands succeed, try the API again to see if there is a response returned from the
API.

Troubleshooting Firehose endpoint reachability 380

https://docs.aws.amazon.com/firehose/latest/dev/vpc.html
https://docs.aws.amazon.com/general/latest/gr/fh.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

Amazon Data Firehose Developer Guide

Troubleshooting HTTP Endpoints

This section describes common troubleshooting steps when dealing with Amazon Data Firehose
delivering data to generic HTTP endpoints destinations and to partner destinations, including
Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, or Sumo Logic. For the purposes
of this section, all applicable destinations are referred to as HTTP endpoints. Make sure that the
IAM role that is specified in your Firehose stream can access the S3 backup bucket and the Lambda
function for data transformation (if data transformation is enabled). Also, make sure that the IAM
role has access to CloudWatch log group and log streams to check error logs. For more information,
see Grant Firehose Access to an HTTP Endpoint Destination.

Note

The information in this section does not apply to the following destinations: Splunk,
OpenSearch Service, S3, and Redshift.

CloudWatch Logs

It is highly recommended that you enable CloudWatch Logging for . Logs are only published when
there are errors delivering to your destination.

Destination Exceptions

ErrorCode: HttpEndpoint.DestinationException

{
 "deliveryStreamARN": "arn:aws:firehose:us-east-1:123456789012:deliverystream/
ronald-test",
 "destination": "custom.firehose.endpoint.com...",
 "deliveryStreamVersionId": 1,
 "message": "The following response was received from the endpoint destination.
 413: {\"requestId\": \"43b8e724-dbac-4510-adb7-ef211c6044b9\", \"timestamp\":
 1598556019164, \"errorMessage\": \"Payload too large\"}",
 "errorCode": "HttpEndpoint.DestinationException",
 "processor": "arn:aws:lambda:us-east-1:379522611494:function:httpLambdaProcessing"
}

Troubleshooting HTTP Endpoints 381

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-http

Amazon Data Firehose Developer Guide

Destination exceptions indicate that Firehose is able to establish a connection to your endpoint
and make an HTTP request, but did not receive a 200 response code. 2xx responses that are not
200s will also result in a destination exception. Amazon Data Firehose logs the response code and
a truncated response payload received from the configured endpoint to CloudWatch Logs. Because
Amazon Data Firehose logs the response code and payload without modification or interpretation,
it is up to the endpoint to provide the exact reason why it rejected Amazon Data Firehose's HTTP
delivery request. The following are the most common troubleshooting recommendations for these
exceptions:

• 400: Indicates that you are sending a bad request due to a misconfiguration of your Amazon
Data Firehose. Make sure that you have the correct url, common attributes, content encoding,
access key, and buffering hints for your destination. See the destination specific documentation
on the required configuration.

• 401: Indicates that the access key you configured for your Firehose stream is incorrect or missing.

• 403: Indicates that the access key you configured for your Firehose stream does not have
permissions to deliver data to the configured endpoint.

• 413: Indicates that the request payload that Amazon Data Firehose sends to the endpoint is too
large for the endpoint to handle. Try lowering the buffering hint to the recommended size for
your destination.

• 429: Indicates that Amazon Data Firehose is sending requests at a greater rate than the
destination can handle. Fine tune your buffering hint by increasing your buffering time and/or
increasing your buffering size (but still within the limit of your destination).

• 5xx: Indicates that there is a problem with the destination. The Amazon Data Firehose service is
still working properly.

Important

Important: While these are the common troubleshooting recommendations, specific
endpoints may have different reasons for providing the response codes and the endpoint
specific recommendations should be followed first.

Invalid Response

ErrorCode: HttpEndpoint.InvalidResponseFromDestination

CloudWatch Logs 382

https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointConfiguration.html#Firehose-Type-HttpEndpointConfiguration-Url
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointRequestConfiguration.html#Firehose-Type-HttpEndpointRequestConfiguration-CommonAttributes
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointRequestConfiguration.html#Firehose-Type-HttpEndpointRequestConfiguration-ContentEncoding
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointConfiguration.html#Firehose-Type-HttpEndpointConfiguration-AccessKey
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointDestinationConfiguration.html#Firehose-Type-HttpEndpointDestinationConfiguration-BufferingHints
https://docs.aws.amazon.com/firehose/latest/APIReference/API_HttpEndpointBufferingHints.html#Firehose-Type-HttpEndpointBufferingHints-SizeInMBs

Amazon Data Firehose Developer Guide

{
 "deliveryStreamARN": "arn:aws:firehose:us-east-1:123456789012:deliverystream/
ronald-test",
 "destination": "custom.firehose.endpoint.com...",
 "deliveryStreamVersionId": 1,
 "message": "The response received from the specified endpoint is invalid.
 Contact the owner of the endpoint to resolve the issue. Response for request
 2de9e8e9-7296-47b0-bea6-9f17b133d847 is not recognized as valid JSON or has unexpected
 fields. Raw response received: 200 {\"requestId\": null}",
 "errorCode": "HttpEndpoint.InvalidResponseFromDestination",
 "processor": "arn:aws:lambda:us-east-1:379522611494:function:httpLambdaProcessing"
}

Invalid response exceptions indicate that Amazon Data Firehose received an invalid response from
the endpoint destination. The response must conform to the response specifications or Amazon
Data Firehose will consider the delivery attempt a failure and will redeliver the same data until the
configured retry duration is exceeded. Amazon Data Firehose treats responses that do not follow
the response specifications as failures even if the response has a 200 status. If you are developing
a Amazon Data Firehose compatible endpoint, follow the response specifications to ensure data is
successfully delivered.

Below are some of the common types of invalid responses and how to fix them:

• Invalid JSON or Unexpected Fields: Indicates that the response can not be properly deserialized
as JSON or has unexpected fields. Ensure that the response is not content-encoded.

• Missing RequestId: Indicates that the response does not contain a requestId.

• RequestId does not match: Indicates that the requestId in the response does not match the
outgoing requestId.

• Missing Timestamp: Indicates that the response does not contain a timestamp field. The
timestamp field must be a number and not a string.

• Missing Content-Type Header: Indicates that the response does not contain a “content-type:
application/json” header. No other content-type is accepted.

Important

Important: Amazon Data Firehose can only deliver data to endpoints that follow the
Firehose request and response specifications. If you are configuring your destination

CloudWatch Logs 383

Amazon Data Firehose Developer Guide

to a third party service, ensure that you are using the correct Amazon Data Firehose
compatible endpoint which will likely be different than the public ingestion endpoint.
For example Datadog’s Amazon Data Firehose endpoint is https://aws-kinesis-
http-intake.logs.datadoghq.com/ while its public endpoint is https://
api.datadoghq.com/.

Other Common Errors

Additional error codes and definitions are listed below.

• Error Code: HttpEndpoint.RequestTimeout - Indicates that the endpoint took longer than 3
minutes to respond. If you are the owner of the destination, decrease the response time of the
destination endpoint. If you are not the owner of the destination, contact the owner and ask if
anything can be done to lower the response time (i.e. decrease the buffering hint so there is less
data being processed per request).

• Error Code: HttpEndpoint.ResponseTooLarge - Indicates that the response is too large. The
response must be less than 1 MiB including headers.

• Error Code: HttpEndpoint.ConnectionFailed - Indicates a connection could not be established
with the configured endpoint. This could be due to a typo in the configured url, the endpoint
not being accessible to Amazon Data Firehose, or the endpoint taking too long to respond to the
connection request.

• Error Code: HttpEndpoint.ConnectionReset - Indicates a connection was made but reset or
prematurely closed by the endpoint.

• Error Code: HttpEndpoint.SSLHandshakeFailure - Indicates an SSL handshake could not be
successfully completed with the configured endpoint.

Troubleshooting MSK As Source

This section describes common troubleshooting steps while using MSK As Source

Note

For troubleshooting processing, transformation or S3 delivery issues, please refer the
earlier sections

Troubleshooting MSK As Source 384

Amazon Data Firehose Developer Guide

Hose creation fails

Check the following if your hose with MSK As Source is failing creation:

• Check that the source MSK cluster is in Active state.

• If you are using Private connectivity, ensure that Private Link on the cluster is turned on.

If you are using Public connectivity, ensure that Public access on the cluster is turned on.

• If you are using Private connectivity, make sure that you add a resource based policy that allows
Firehose to create Private Link. Also refer: MSK cross account permissions.

• Ensure that the role in source configuration has permission to ingest data from cluster's Topic.

• Ensure that your VPC security groups allow incoming traffic on ports used by the cluster's
bootstrap servers.

Hose Suspended

Check the following if your hose is in SUSPENDED state

• Check that the source MSK cluster is in Active state.

• Check that the source topic exists. In case the topic was deleted and re-created, you will have to
delete and re-create the Firehose stream as well.

Hose Backpresurred

The value of DataReadFromSource.Backpressured will be 1 when BytesPerSecondLimit per
partition is exceeded or that the normal flow of delivery is slow or stopped.

• If you are hitting BytesPerSecondLimit please check DataReadFromSource.Bytes metric and
request a limit increase.

• Check the CloudWatch logs, destination metrics, Data Transformation metrics and Format
Conversion metrics to identify the bottlenecks.

Incorrect Data Freshness

Data freshness seems incorrect

Hose creation fails 385

https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.aws.amazon.com/msk/latest/developerguide/public-access.html
https://docs.aws.amazon.com/msk/latest/developerguide/mvpc-cross-account-permissions.html
https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html
https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html

Amazon Data Firehose Developer Guide

• Firehose calculates the data freshness based on the timestamp of the consumed record.
To ensure that this timestamp is correctly recorded when the producer record is persisted
in the Kafka's broker logs, set the Kafka topic timestamp type configuration to be
message.timestamp.type=LogAppendTime.

MSK cluster connection issues

The following procedure explain how you can validate connectivity to MSK clusters. For details
about setting up Amazon MSK client, see Getting started using Amazon MSK in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

To validate connectivity to MSK clusters

1. Create a Unix-based (preferably AL2) Amazon EC2 instance. If you have only VPC connectivity
enabled on your cluster then make sure your EC2 instance runs in the same VPC. SSH into the
instance once its available. For more information, see this tutorial in the Amazon EC2 User
Guide.

2. Install Java using the Yum package manager by running the following command. For more
information, see the installation instructions in the Amazon Corretto 8 User Guide.

sudo yum install java-1.8.0

3. Install the AWS client by running the following command.

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

4. Download the Apache Kafka client 2.6* version by running the following command.

wget https://archive.apache.org/dist/kafka/2.6.2/kafka_2.12-2.6.2.tgz
tar -xzf kafka_2.12-2.6.2.tgz

5. Go to the kafka_2.12-2.6.2/libs directory, then run the following command to download
the Amazon MSK IAM JAR file.

wget https://github.com/aws/aws-msk-iam-auth/releases/download/v1.1.3/aws-msk-iam-
auth-1.1.3-all.jar

MSK cluster connection issues 386

https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://aws.amazon.com/cli/

Amazon Data Firehose Developer Guide

6. Create client.properties file in Kafka bin folder.

7. Replace awsRoleArn with the role ARN that you have used in your Firehose
SourceConfiguration and verify the cert location. Allow your AWS client user to assume
role awsRoleArn. AWS client user will attempt to assume the role that you specified here.

[ec2-user@ip-xx-xx-xx-xx bin]$ cat client.properties
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required
 awsRoleArn="<role arn>" awsStsRegion="<region name>";
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
awsDebugCreds=true
ssl.truststore.location=/usr/lib/jvm/java-1.8.0-
openjdk-1.8.0.342.b07-1.amzn2.0.1.x86_64/jre/lib/security/cacerts
ssl.truststore.password=changeit

8. Run the following Kafka command to list topics. If your connection is public, use the public
endpoint Bootstrap servers. If your connection is private, use the private endpoint Bootstrap
servers.

bin/kafka-topics.sh --list --bootstrap-server <bootstrap servers> --command-config
 bin/client.properties

If the request is successful, you should see an output similar to the following example.

[ec2-user@ip-xx-xx-xx-xx kafka_2.12-2.6.2]$ bin/kafka-topics.sh --list --bootstrap-
server <bootstrap servers> --command-config bin/client.properties

[xxxx-xx-xx 05:49:50,877] WARN The configuration 'awsDebugCreds' was supplied but
 isn't a known config. (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration 'ssl.truststore.location' was
 supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration 'sasl.jaas.config' was supplied
 but isn't a known config. (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:49:50,878] WARN The configuration
 'sasl.client.callback.handler.class' was supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)

MSK cluster connection issues 387

Amazon Data Firehose Developer Guide

[xxxx-xx-xx 05:49:50,878] WARN The configuration 'ssl.truststore.password' was
 supplied but isn't a known config.
 (org.apache.kafka.clients.admin.AdminClientConfig)
[xxxx-xx-xx 05:50:21,629] WARN [AdminClient clientId=adminclient-1] Connection to
 node...
__amazon_msk_canary
__consumer_offsets

9. If you have any issues running the previous script, verify that the bootstrap servers you
provided are reachable on the specified port. To do this, you could download and use telnet or
a similar utility as shown in the following command.

sudo yum install telnet
telnet <bootstrap servers><port>

If the request is successful, you will get the following output. This means that you're able to
connect to your MSK cluster within your local VPC and bootstrap servers are healthy on the
specified port.

Connected to ..

10. If the request is unsuccessful, check inbound rules on your VPC security group. As an example,
you could use the following properties on the inbound rule.

Type: All traffic
Port: Port used by the bootstrap server (e.g. 14001)
Source: 0.0.0.0/0

Retry the telnet connection as shown in the previous step. If you're still unable to connect or
your Firehose connection is still failing, contact the AWS support.

MSK cluster connection issues 388

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules.html
https://aws.amazon.com/contact-us/

Amazon Data Firehose Developer Guide

Amazon Data Firehose Quota

This section describes current quotas, formerly referred to as limits, within Amazon Data Firehose.
Each quota applies on a per-Region basis unless otherwise specified.

The Service Quotas console is a central location where you can view and manage your quotas
for AWS services, and request a quota increase for many of the resources that you use. Use the
quota information that we provide to manage your AWS infrastructure. Plan to request any quota
increases in advance of the time that you'll need them.

For more information, see Amazon Data Firehose endpoints and quotas in the Amazon Web
Services General Reference.

The following section shows Amazon Data Firehose has the following quota.

• With Amazon MSK as the source for the Firehose stream, each Firehose stream has a default
quota of 10 MB/sec of read throughput per partition and 10MB max record size. You can use
the Service quota increase to request an increase on the default quota of 10 MB/sec of read
throughput per partition.

• With Amazon MSK as the source for the Firehose stream, there is a 6 MB maximum record size
if AWS Lambda is enabled, and 10 MB maximum record size if Lambda is disabled. AWS Lambda
caps its incoming record to 6 MB, and Amazon Data Firehose forwards records above 6Mb to an
error S3 bucket. If Lambda is disabled, Firehose cap its incoming record to 10 MB. If Amazon Data
Firehose receives a record size from Amazon MSK that is larger than 10 MB, then Amazon Data
Firehose delivers this record to S3 error bucket and emits Cloudwatch metrics to your account.
For more information on AWS Lambda limits, see: https://docs.aws.amazon.com/lambda/latest/
dg/gettingstarted-limits.html.

• When dynamic partitioning on a Firehose stream is enabled, there is a default quota of 500
active partitions that can be created for that Firehose stream. The active partition count is
the total number of active partitions within the delivery buffer. For example, if the dynamic
partitioning query constructs 3 partitions per second and you have a buffer hint configuration
that triggers delivery every 60 seconds, then, on average, you would have 180 active partitions.
Once data is delivered in a partition, then this partition is no longer active. You can use the
Amazon Data Firehose Limits form to request an increase of this quota up to 5000 active
partitions per given Firehose stream. If you need more partitions, you can create more Firehose
streams and distribute the active partitions across them.

389

https://docs.aws.amazon.com/general/latest/gr/fh.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits

Amazon Data Firehose Developer Guide

• When dynamic partitioning on a Firehose stream is enabled, a max throughput of 1 GB per
second is supported for each active partition.

• Each account will have following quota for the number of Firehose streams per Region:

• US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland), Asia Pacific (Tokyo):
5,000 Firehose streams

• Europe (Frankfurt), Europe (London), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Seoul), Asia Pacific (Mumbai), AWS GovCloud (US-West), Canada (West), Canada (Central):
2,000 Firehose streams

• Europe (Paris), Europe (Milan), Europe (Stockholm), Asia Pacific (Hong Kong), Asia Pacific
(Osaka), South America (Sao Paulo), China (Ningxia), China (Beijing), Middle East (Bahrain),
AWS GovCloud (US-East), Africa (Cape Town): 500 Firehose streams

• Europe (Zurich), Europe (Spain), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Asia Pacific
(Melbourne), Middle East (UAE), Israel (Tel Aviv), Canada West (Calgary), Canada (Central), Asia
Pacific (Malaysia), Asia Pacific (Thailand), Mexico (Central): 100 Firehose streams

• If you exceed this number, a call to CreateDeliveryStream results in a
LimitExceededException exception. To increase this quota, you can use Service Quotas
if it's available in your Region. For information about using Service Quotas, see Requesting a
Quota Increase. If Service Quotas aren't available in your Region, you can use the Amazon Data
Firehose Limits form to request an increase.

• When Direct PUT is configured as the data source, each Firehose stream provides the following
combined quota for PutRecord and PutRecordBatch requests:

• For US East (N. Virginia), US West (Oregon), and Europe (Ireland): 500,000 records/second,
2,000 requests/second, and 5 MiB/second.

• For other AWS Regions: 100,000 records/second, 1,000 requests/second, and 1 MiB/second.

If a Direct PUT stream experiences throttling due to higher data ingest volumes that exceed
the throughput capacity of a Firehose stream, Amazon Data Firehose automatically increases
the throughput limit of the stream until the throttling is contained. Depending on increased
throughput and throttling, it might take longer for Firehose to increase the throughput of a
stream to the desired levels. Because of this, continue to retry the failed data ingest records. If
you expect the data volume to increase in sudden large bursts, or if your new stream needs a
higher throughput than the default throughput limit, request to increase the throughput limit.

To request an increase in quota, use the Amazon Data Firehose Limits form. The three quota
scale proportionally. For example, if you increase the throughput quota in US East (N. Virginia),

390

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=kinesis-firehose-limits

Amazon Data Firehose Developer Guide

US West (Oregon), or Europe (Ireland) to 10 MiB/second, the other two quota increase to 4,000
requests/second and 1,000,000 records/second.

Note

Do not use resource-level limits and quotas as a way to control your usage of the service.

Important

If the increased quota is much higher than the running traffic, it causes small delivery
batches to destinations. This is inefficient and can result in higher costs at the destination
services. Be sure to increase the quota only to match current running traffic, and increase
the quota further if traffic increases.

Important

Note that smaller data records can lead to higher costs. Firehose ingestion pricing is
based on the number of data records you send to the service, times the size of each
record rounded up to the nearest 5KB (5120 bytes). So, for the same volume of incoming
data (bytes), if there is a greater number of incoming records, the cost incurred would be
higher. For example, if the total incoming data volume is 5MiB, sending 5MiB of data over
5,000 records costs more compared to sending the same amount of data using 1,000
records. For more information, see Amazon Data Firehose in the AWS Calculator.

Note

When Kinesis Data Streams is configured as the data source, this quota doesn't apply, and
Amazon Data Firehose scales up and down with no limit.

• Each Firehose stream stores data records for up to 24 hours in case the delivery destination is
unavailable and if the source is DirectPut. If the source is Kinesis Data Streams (KDS) and the
destination is unavailable, then the data will be retained based on your KDS configuration.

• The maximum size of a record sent to Amazon Data Firehose, before base64-encoding, is 1,000
KiB.

391

https://aws.amazon.com/kinesis/data-firehose/pricing/
https://calculator.aws/#/createCalculator

Amazon Data Firehose Developer Guide

• The PutRecordBatch operation can take up to 500 records per call or 4 MiB per call, whichever is
smaller. This quota cannot be changed.

• Each of the following operations can provide up to five invocations per second, which is a hard
limit.

• CreateDeliveryStream

• DeleteDeliveryStream

• DescribeDeliveryStream

• ListDeliveryStreams

• UpdateDestination

• TagDeliveryStream

• UntagDeliveryStream

• ListTagsForDeliveryStream

• StartDeliveryStreamEncryption

• StopDeliveryStreamEncryption

• The buffer interval hints range from 60 seconds to 900 seconds.

• For delivery from Amazon Data Firehose to Amazon Redshift, only publicly accessible Amazon
Redshift clusters are supported.

• The retry duration range is from 0 seconds to 7,200 seconds for Amazon Redshift and
OpenSearch Service delivery.

• Firehose supports Elasticsearch versions – 1.5, 2.3, 5.1, 5.3, 5.5, 5.6, as well as all 6.*, 7.*, and 8.*
versions. Firehose supports Amazon OpenSearch Service 2.x up to 2.11.

• When the destination is Amazon S3, Amazon Redshift, or OpenSearch Service, Amazon Data
Firehose allows up to 5 outstanding Lambda invocations per shard. For Splunk, the quota is 10
outstanding Lambda invocations per shard.

• You can use a CMK of type CUSTOMER_MANAGED_CMK to encrypt up to 500 Firehose streams.

392

https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CreateDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DeleteDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_DescribeDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListDeliveryStreams.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UpdateDestination.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_TagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_UntagDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_ListTagsForDeliveryStream.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StartDeliveryStreamEncryption.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_StopDeliveryStreamEncryption.html

Amazon Data Firehose Developer Guide

Document history

The following table describes the important changes to the Amazon Data Firehose documentation.

Change Description Date Changed

Added Database
as a source (public
preview)

You can now replicate database changes to Apache
Iceberg Tables in Amazon S3. See Replicate database
changes to Apache Iceberg.

November 15,
2024

General Availabil
ity (GA) release
for Added Apache
Iceberg Tables as a
destination

You can create a Firehose stream with Apache
Iceberg Tables as the destination. See Deliver data to
Apache Iceberg Tables.

September 30,
2024

Added data types
examples

Added examples of supported data types for Apache
Iceberg Tables. See Understand supported data
types.

August 22, 2024

New Region launch Amazon Data Firehose is now available in Asia Pacific
(Malaysia). See Amazon Data Firehose Quota.

August 22, 2024

Added Apache
Iceberg Tables as a
destination (public
preview)

You can create a Firehose stream with Apache
Iceberg Tables as the destination. See Deliver data to
Apache Iceberg Tables.

July 25, 2024

Buffering hints for
Snowflake

Snowflake now supports buffering hints. See the
section called “Configure destination settings for
Snowflake”.

July 25, 2024

Snowflake as a
destination in new
regions

Snowflake is now available as a destination in Asia
Pacific (Singapore), Asia Pacific (Seoul), and Asia
Pacific (Sydney). See the section called “Configure
destination settings for Snowflake”.

July 25, 2024

393

Amazon Data Firehose Developer Guide

Change Description Date Changed

Restructured user
guide sections

Simplified navigation for sections in user guide. See
Send data to a Firehose stream and Troubleshoot
errors.

July 5, 2024

Amazon Data
Firehose integrate
s with AWS Secrets
Manager

You can now access to your secrets and automate
credential rotation securely with Secrets Manager.
See the section called “Authenticate with AWS
Secrets Manager”.

June 06, 2024

Added support for
ingesting logs for
Dynatrace

You can now send logs and events to Dynatrace for
further analysis. See the section called “Configure
destination settings for Dynatrace”.

April 18, 2024

General Availabil
ity (GA) release
for Snowflake as a
destination

Snowflake is now generally available as a destinati
on. See the section called “Configure destination
settings for Snowflake”.

April 17, 2024

Amazon Kinesis
Data Firehose is
now known as
Amazon Data
Firehose

Amazon Kinesis Data Firehose has rebranded to
Amazon Data Firehose. See What is Amazon Data
Firehose

February 9, 2024

Added Snowflake
as a destination
(public preview)

You can create a Firehose stream with Snowflake as
the destination. See the section called “Configure
destination settings for Snowflake”.

January 19, 2024

Added automatic
decompression of
CloudWatch Logs

You can enable decompression on new or existing
streams to send decompressed CloudWatch Logs
data to Firehose destinations. See the section called
“Send CloudWatch Logs to Firehose”.

December 15,
2023

394

Amazon Data Firehose Developer Guide

Change Description Date Changed

Added Splunk
Observabi
lity Cloud as a
destination

You can create a Firehose stream with Splunk
Observability Cloud as the destination. See the
section called “Configure destination settings for
Splunk Observability Cloud”.

October 3, 2023

Added Amazon
Managed
Streaming for
Apache Kafka as a
data source

You can now configure Amazon MSK to send
information to a Firehose stream. See the section
called “Configure source settings for Amazon MSK”.

September 26th,
2023

Added support for
DocumentID type
for the OpenSearc
h Service destinati
on

If OpenSearch Service is your Firehose stream's
destination, DocumentID type indicates the method
for setting up document ID. The supported methods
are Firehose generated document ID and OpenSearc
h Service generated document ID. See the section
called “Configure destination settings”.

May 10th, 2023

Added support
dynamic partition
ing

Added support for continuous dynamic partitioning
of the streaming data in Amazon Data Firehose. See
Partition streaming data.

August 31, 2021

Added a topic on
custom prefixes.

Added a topic about the expressions that you
can use when building a custom prefix for data
that is delivered to Amazon S3. See the section
called “Understand custom prefixes for Amazon S3
objects”.

December 20,
2018

Added New
Amazon Data
Firehose Tutorial

Added a tutorial that demonstrates how to send
Amazon VPC flow logs to Splunk through Amazon
Data Firehose. See Ingest VPC flow logs into Splunk
using Amazon Data Firehose.

October 30, 2018

Added Four New
Amazon Data
Firehose Regions

Added Paris, Mumbai, Sao Paulo, and London. For
more information, see Amazon Data Firehose Quota.

June 27, 2018

395

Amazon Data Firehose Developer Guide

Change Description Date Changed

Added Two New
Amazon Data
Firehose Regions

Added Seoul and Montreal. For more information,
see Amazon Data Firehose Quota.

June 13, 2018

New Kinesis
Streams as Source
feature

Added Kinesis Streams as a potential source for
records for a Firehose stream. For more information,
see Choose source and destination for your Firehose
stream.

August 18, 2017

Update to console
documentation

The Firehose stream creation wizard was updated.
For more information, see Tutorial: Create a Firehose
stream from console.

July 19, 2017

New data
transformation

You can configure Amazon Data Firehose to
transform your data before data delivery. For more
information, see Transform source data in Amazon
Data Firehose.

December 19,
2016

New Amazon
Redshift COPY
retry

You can configure Amazon Data Firehose to retry a
COPY command to your Amazon Redshift cluster if
it fails. For more information, see Tutorial: Create
a Firehose stream from console, Understand data
delivery in Amazon Data Firehose , and Amazon Data
Firehose Quota.

May 18, 2016

New Amazon Data
Firehose destinati
on, Amazon
OpenSearch
Service

You can create a Firehose stream with Amazon
OpenSearch Service as the destination. For more
information, see Tutorial: Create a Firehose stream
from console, Understand data delivery in Amazon
Data Firehose , and Grant Firehose access to a public
OpenSearch Service destination.

April 19, 2016

396

Amazon Data Firehose Developer Guide

Change Description Date Changed

New enhanced
CloudWatch
metrics and
troubleshooting
features

Updated Monitor Amazon Data Firehose and
Troubleshoot errors in Amazon Data Firehose.

April 19, 2016

New enhanced
Kinesis agent

Updated Configure Kinesis agent to send data. April 11, 2016

New Kinesis agents Added Configure Kinesis agent to send data. October 2, 2015

Initial release Initial release of the Amazon Data Firehose Developer
Guide.

October 4, 2015

397

	Amazon Data Firehose
	Table of Contents
	
	What is Amazon Data Firehose?
	Learn key concepts
	Understand data flow in Amazon Data Firehose
	Using Firehose with an AWS SDK

	Complete prerequisites to set up Amazon Data Firehose
	Sign up for AWS
	(Optional) Download libraries and tools

	Tutorial: Create a Firehose stream from console
	Choose source and destination for your Firehose stream
	Configure source settings
	Configure source settings for Amazon MSK
	Configure source settings for Amazon Kinesis Data Streams

	(Optional) Configure record transformation and format conversion
	If you choose Amazon MSK as the source for your Firehose stream.
	If you choose Managed Service for Apache Flink or Direct PUT as the source for your Firehose stream

	Configure destination settings
	Configure destination settings for Amazon S3
	Configure destination settings for Apache Iceberg Tables
	Configure destination settings for Amazon Redshift
	Amazon Redshift Provisioned Cluster
	Configure destination settings for Amazon Redshift Serverless workgroup

	Configure destination settings for OpenSearch Service
	Configure destination settings for OpenSearch Serverless
	Configure destination settings for HTTP Endpoint
	Configure destination settings for Datadog
	Configure destination settings for Honeycomb
	Configure destination settings for Coralogix
	Configure destination settings for Dynatrace
	Configure destination settings for LogicMonitor
	Configure destination settings for Logz.io
	Configure destination settings for MongoDB Cloud
	Configure destination settings for New Relic
	Configure destination settings for Snowflake
	Configure destination settings for Splunk
	Configure destination settings for Splunk Observability Cloud
	Configure destination settings for Sumo Logic
	Configure destination settings for Elastic

	Configure backup settings
	Configure buffering hints

	Configure advanced settings

	Testing Firehose stream with sample data
	Prerequisites
	Test with Amazon S3
	Test with Amazon Redshift
	Test with OpenSearch Service
	Test with Splunk
	Test with Apache Iceberg Tables

	Send data to a Firehose stream
	Configure Kinesis agent to send data
	Prerequisites
	Manage AWS credentials
	Create custom credential providers
	Download and install the Agent
	Configure and start the Agent
	Specify agent configuration settings
	Configure multiple file directories and streams
	Pre-process data with Agents
	Use common Agent CLI commands
	Troubleshoot issues when sending from Kinesis Agent

	Send data with AWS SDK
	Single write operations using PutRecord
	Batch write operations using PutRecordBatch

	Send CloudWatch Logs to Firehose
	Decompress CloudWatch Logs
	Extract message after decompression of CloudWatch Logs
	Enable decompression on a new Firehose stream from console
	Enable decompression on an existing Firehose stream
	Enabling decompression when Lambda processing is disabled
	Enabling decompression when Lambda processing is enabled

	Disable decompression on Firehose stream
	Troubleshoot decompression in Firehose

	Send CloudWatch Events to Firehose
	Configure AWS IoT to send data to Firehose

	Transform source data in Amazon Data Firehose
	Understand data transformation flow
	Lambda invocation duration
	Required parameters for data transformation
	Supported Lambda blueprints
	Handle failure in data transformation
	Back up source records

	Partition streaming data in Amazon Data Firehose
	Enable dynamic partitioning in Amazon Data Firehose
	Understand partitioning keys
	Create partitioning keys with inline parsing
	Create partitioning keys with an AWS Lambda function

	Use Amazon S3 bucket prefix to deliver data
	Add a new line delimiter when delivering data to Amazon S3

	Apply dynamic partitioning to aggregated data
	Troubleshoot dynamic partitioning errors
	Buffer data for dynamic partitioning

	Convert input data format in Amazon Data Firehose
	Deserializer
	Choose the JSON deserializer

	Schema
	Serializer
	Choose the serializer

	Enable record format conversion
	Enable record format conversion from console
	Manage record format conversion from Firehose API

	Handling errors for data format conversion

	Understand data delivery in Amazon Data Firehose
	Understand delivery across AWS accounts and regions
	Understand HTTP endpoint delivery request and response specifications
	Request format
	Response format
	Examples

	Handle data delivery failures
	Amazon S3
	Amazon Redshift
	Amazon OpenSearch Service and OpenSearch Serverless
	Splunk
	HTTP endpoint destination
	Snowflake

	Configure Amazon S3 object name format
	Supported time zones
	Understand custom prefixes for Amazon S3 objects
	timestamp namespace
	firehose namespace
	partitionKeyFromLambda and partitionKeyFromQuery namespaces
	Semantic rules
	Example prefixes

	Configure index rotation for OpenSearch Service
	Pause and resume data delivery
	Pause a Firehose stream
	Resume a Firehose stream

	Deliver data to Apache Iceberg Tables with Amazon Data Firehose
	Consideration and limitations
	Prerequisites to use Apache Iceberg Tables as a destination
	Prerequisites to deliver to Iceberg Tables in Amazon S3
	Prerequisites to deliver to Amazon S3 Tables

	Set up the Firehose stream
	Configure source and destination
	Configure data transformation
	Connect data catalog
	Configure JQ expressions
	Configure unique keys
	Specify retry duration
	Handle failed delivery or processing
	Configure buffer hints
	Configure advanced settings

	Route incoming records to a single Iceberg table
	Route incoming records to different Iceberg tables
	Provide routing information to Firehose with JSONQuery expression
	Provide routing information using an AWS Lambda function
	Sample Lambda function

	Monitor metrics
	Understand supported data types
	Data types examples

	Resources

	Replicate database changes to Apache Iceberg Tables with Amazon Data Firehose
	Consideration and limitations
	Prerequisites to use database as a source
	Set up the Firehose stream
	Configure source and destination
	Configure database connectivity
	Configure data capture
	Configure surrogate keys
	Provide snapshot watermark table
	Configure destination settings
	Connect data catalog
	Enable automatic creation of tables
	Enable schema evolution
	Specify retry duration
	Handle failed delivery or processing
	Configure buffer hints
	Configure advanced settings

	Monitor metrics
	Grant Firehose access to replicate database changes to Apache Iceberg Tables
	Understand supported data types
	Set up database connectivity
	MySQL - RDS, Aurora and self-managed databases running on Amazon EC2
	PostgreSQL - RDS and Aurora Databases
	PostgreSQL - self-managed databases running on Amazon EC2
	PostgreSQL - sharing table ownership for RDS or self-managed databases running on Amazon EC2
	Enable transaction logs
	MySQL
	PostgreSQL

	Tag a Firehose stream
	Understand tag basics
	Track costs with tagging
	Know tag restrictions

	Security in Amazon Data Firehose
	Data protection in Amazon Data Firehose
	Server-side encryption with Kinesis Data Streams
	Server-side encryption with Direct PUT or other data sources

	Controlling access with Amazon Data Firehose
	Grant access to your Firehose resources
	Grant Firehose access to your private Amazon MSK cluster
	Allow Firehose to assume an IAM role
	Grant Firehose access to AWS Glue for data format conversion
	Grant Firehose access to an Amazon S3 destination
	Grant Firehose access to Amazon S3 Tables
	Grant Firehose access to an Apache Iceberg Tables destination
	Grant Firehose access to an Amazon Redshift destination
	IAM role and access policy
	VPC access to an Amazon Redshift provisioned cluster or Amazon Redshift Serverless workgroup

	Grant Firehose access to a public OpenSearch Service destination
	Grant Firehose access to an OpenSearch Service destination in a VPC
	Grant Firehose access to a public OpenSearch Serverless destination
	Grant Firehose access to an OpenSearch Serverless destination in a VPC
	Grant Firehose access to a Splunk destination
	Accessing Splunk in VPC
	Ingest VPC flow logs into Splunk using Amazon Data Firehose
	Accessing Snowflake or HTTP end point
	Grant Firehose access to a Snowflake destination
	Accessing Snowflake in VPC
	Grant Firehose access to an HTTP endpoint destination
	Cross-account delivery from Amazon MSK
	Cross-account delivery to an Amazon S3 destination
	Cross-account delivery to an OpenSearch Service destination
	Using tags to control access
	CreateDeliveryStream
	TagDeliveryStream
	UntagDeliveryStream
	ListDeliveryStreams
	Other operations

	Authenticate with AWS Secrets Manager in Amazon Data Firehose
	Understand secrets
	Create a secret
	Use the secret
	Grant access to Firehose to retrieve the secret

	Rotate the secret

	Manage IAM roles through Amazon Data Firehose console
	Choose an existing IAM role
	Create a new IAM role from console
	Steps to create an IAM role from console

	Edit IAM role from console
	Steps to edit IAM role from console

	Understand compliance for Amazon Data Firehose
	Resilience in Amazon Data Firehose
	Disaster recovery

	Understand infrastructure security in Amazon Data Firehose
	Using Amazon Data Firehose with AWS PrivateLink
	Using interface VPC endpoints (AWS PrivateLink) for Firehose
	Supported AWS Regions

	Implement security best practices for Amazon Data Firehose
	Implement least privilege access
	Use IAM roles
	Implement server-side encryption in dependent resources
	Use CloudTrail to monitor API calls

	Monitor Amazon Data Firehose
	Implement best practices with CloudWatch Alarms
	Monitor Amazon Data Firehose with CloudWatch metrics
	CloudWatch metrics for dynamic partitioning
	CloudWatch metrics for data delivery
	Delivery to OpenSearch Service
	Delivery to OpenSearch Serverless
	Delivery to Amazon Redshift
	Delivery to Amazon S3
	Delivery to Snowflake
	Delivery to Splunk
	Delivery to HTTP Endpoints

	Data ingestion metrics
	Data ingestion through Kinesis Data Streams
	Data ingestion through Direct PUT
	Data ingestion from MSK

	API-level CloudWatch metrics
	Data Transformation CloudWatch Metrics
	CloudWatch Logs Decompression Metrics
	Format Conversion CloudWatch Metrics
	Server-Side Encryption (SSE) CloudWatch Metrics
	Dimensions for Amazon Data Firehose
	Amazon Data Firehose Usage Metrics

	Access CloudWatch Metrics for Amazon Data Firehose
	Monitor Amazon Data Firehose Using CloudWatch Logs
	Data delivery errors
	Amazon S3 Data delivery errors
	Apache Iceberg Tables Data Delivery Errors
	Amazon Redshift Data delivery errors
	Snowflake Data delivery errors
	Splunk Data delivery errors
	ElasticSearch Data delivery errors
	HTTPS Endpoint Data delivery errors
	Amazon OpenSearch Service Data delivery errors
	Lambda invocation errors
	Kinesis invocation errors
	Kinesis DirectPut invocation errors
	AWS Glue invocation errors
	DataFormatConversion invocation errors

	Access CloudWatch logs for Amazon Data Firehose
	Monitor Kinesis Agent health
	Monitor with CloudWatch

	Log Amazon Data Firehose API calls with AWS CloudTrail
	Firehose information in CloudTrail
	Example: Firehose log file entries

	Code examples for Firehose using AWS SDKs
	Basic examples for Firehose using AWS SDKs
	Actions for Firehose using AWS SDKs
	Use PutRecord with an AWS SDK or CLI
	Use PutRecordBatch with an AWS SDK or CLI

	Scenarios for Firehose using AWS SDKs
	Use Amazon Data Firehose to process individual and batch records

	Troubleshoot errors in Amazon Data Firehose
	Common issues
	Firehose stream unavailable
	No data at destination
	Data freshness metric increasing or not emitted
	Record format conversion to Apache Parquet fails
	Missing fields for transformed object for Lambda

	Troubleshooting Amazon S3
	Troubleshooting Amazon Redshift
	Troubleshooting Amazon OpenSearch Service
	Troubleshooting Splunk
	Troubleshooting Snowflake
	Firehose stream creation fails
	Delivery failures

	Troubleshooting Firehose endpoint reachability
	Troubleshooting HTTP Endpoints
	CloudWatch Logs
	Destination Exceptions
	Invalid Response
	Other Common Errors

	Troubleshooting MSK As Source
	Hose creation fails
	Hose Suspended
	Hose Backpresurred
	Incorrect Data Freshness
	MSK cluster connection issues

	Amazon Data Firehose Quota
	Document history

